КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Этап I. Идентификация
Этап 6. Опытная эксплуатация Этап 5. Тестирование Этап 4. Реализация Создается прототип экспертной системы, включающий базу знаний и другие подсистемы. На данном этапе применяются следующие инструментальные средства: программирование на обычных языках (Паскаль, Си и др.), программирование на специализированных языках, применяемых в задачах искусственного интеллекта (LISP, FRL, SmallTalk и др.) и др. Четвертый этап разработки экспертных систем в какой-то степени является ключевым, так как здесь происходит создание программного комплекса, демонстрирующего жизнеспособность подхода в целом. Средняя длительность 1-2 месяца. Прототип проверяется на удобство и адекватность интерфейсов ввода-вывода, эффективность стратегии управления, качество проверочных примеров, корректность базы знаний. Тестирование – это выявление ошибок в выбранном подходе, выявление ошибок в реализации прототипа, а также выработка рекомендаций по доводке системы до промышленного варианта. Проверяется пригодность экспертной системы для конечных пользователей. По результатам этого этапа может потребоваться существенная модификация экспертной системы. Процесс разработки экспертной системы не сводится к строгой последовательности перечисленных выше этапов. В ходе работ приходится неоднократно возвращаться на более ранние этапы и пересматривать принятые там решения. На этапе идентификации определяются задачи, участники процесса разработки и их роли, ресурсы и цели. Определение участников и их ролей сводится к определению количества экспертов и инженеров по знаниям, а также формы их взаимоотношений. Обычно в основном цикле разработки экспертной системы участвуют не менее трех-четырех человек (один эксперт, один или два инженера по знаниям и один программист, привлекаемый для модификации и согласования инструментальных средств). К процессу разработки экспертной системы могут привлекаться и другие участники. Например, инженер по знаниям может привлекать других экспертов для того, чтобы убедиться в правильности своего понимания основного эксперта; представительности тестов, демонстрирующих особенности рассматриваемой задачи; совпадении взглядов различных экспертов на качество предлагаемых решений. Формы взаимоотношений экспертов и инженеров следующие: эксперт исполняет роль информирующего или эксперт выполняет роль учителя, а инженер - ученика. Вне зависимости от выбранной формы взаимоотношений инженер по знаниям должен быть готов и способен изучать специфические особенности той проблемной области, в рамках которой предстоит работать создаваемой экспертной системе. Несмотря на то, что основу знаний экспертной системы будут составлять знания эксперта, для достижения успеха инженер по знаниям должен использовать дополнительные источники знаний в виде книг, инструкций, которые ему рекомендовал эксперт. Идентификация задачи заключается в составлении неформального (вербального) описания решаемой задачи. В этом описании указываются: · общие характеристики задачи; · подзадачи, выделяемые внутри данной задачи; · ключевые понятия (объекты), характеристики и отношения; · входные (выходные) данные; · предположительный вид решения; · знания, релевантные решаемой задаче; · примеры (тесты) решения задачи.
Цель этапа идентификации задачи состоит в том, чтобы характеризовать задачу и структуру поддерживающих ее знаний и приступить к работе по созданию базы знаний. Если исходная задача оказывается слишком сложной с учетом имеющихся ресурсов, то этап идентификации может потребовать нескольких итераций. В ходе идентификации задачи необходимо ответить на следующие вопросы: 1. Какие задачи предлагается решать экспертной системе? 2. Как эти задачи могут быть охарактеризованы и определены? 3. На какие подзадачи разбивается каждая задача, какие данные они используют? 4. Какие ситуации препятствуют решению? 5. Как эти препятствия будут влиять на экспертную систему? 6. Ряд других вопросов. В процессе идентификации задачи инженер и эксперт работают в тесном контакте. Начальное содержательное описание задачи экспертом влечет за собой вопросы инженера по знаниям с целью уточнения терминов и ключевых понятий. Эксперт уточняет описание задачи, объясняет, как решать эту задачу и какие рассуждения лежат в основе решения. После нескольких циклов, уточняющих описание, эксперт и инженер по знаниям получают окончательное неформальное описание задачи.
При разработке экспертной системы типичными ресурсами являются: · источники знаний, · время разработки, · вычислительные средства (возможности ЭВМ и программного инструментария) · и объем финансирования.
Для достижения успеха эксперт и инженер должны использовать при построении экспертной системы все доступные им источники знаний. Для эксперта источниками знаний могут быть его предшествующий опыт по решению задачи, книги, конкретные примеры задач и использованных решений. Для инженера по знаниям источниками знаний могут быть опыт в решении аналогичных задач, методы решения и представления знаний, программный инструментарий. При определении временных ресурсов необходимо иметь в виду, что сроки разработки и внедрения экспертной системы составляют (за редким исключением) не менее шести месяцев (при трудоемкости от двух до пяти человеко-лет). Задача определения ресурсов является весьма важной, поскольку ограниченность какого-либо ресурса существенно влияет на процесс проектирования. Так, например, при недостаточном финансировании предпочтение может быть отдано не разработке оригинальной новой системы, а адаптации существующей. Задача идентификации целей заключается в формулировании в явном виде целей построения экспертной системы. При этом важно отличать цели, ради которых строится система, от задач, которые она должна решать. Примерами возможных целей являются: формализация неформальных знаний экспертов; улучшение качества решений, принимаемых экспертом; автоматизация рутинных аспектов работы эксперта (пользователя); тиражирование знаний эксперта. На первом этапе инженер по знаниям должен ответить на основной вопрос: «Подходят ли методы инженерии знаний для решения предложенной задачи?». Для положительного ответа на данный вопрос необходимо, чтобы задача относилась к достаточно узкой, специальной области знаний и не требовала для своего решения использования того, что принято называть здравым смыслом, поскольку методы искусственного интеллекта не дают возможности формализовать это понятие. Кроме того, качество экспертной системы зависит в конечном счете от уровня сложности решаемой задачи и ясности ее формулировки. Задача не должна быть ни слишком легкой, ни слишком трудной. Обычно число связанных понятий, релевантных проблеме, должно составлять несколько сотен. Говоря другими словами, назначение экспертной системы в том, чтобы решать некоторую задачу из данной области, а не в том, чтобы быть экспертом в этой области. Следует подчеркнуть, что в настоящее время при разработке экспертной системы (особенно динамических экспертных систем) применяется принцип кооперативного проектирования, заключающийся в участии конечных пользователей системы в процессе разработки. Пользователи обладают неформальным пониманием прикладных задач, которые должна решать разрабатываемая программная система. Хотя системные аналитики и программисты могут изучить этот класс прикладных задач, затраты на обучение (прежде всего время) будут высоки, а их компетентность все равно останется более низкой, чем у опытных пользователей. Поэтому включение конечных пользователей в группу разработчиков обычно более эффективно и позволяет более качественно анализировать автоматизируемые операции. Эти преимущества усиливаются по мере усложнения решаемой задачи.
Дата добавления: 2013-12-13; Просмотров: 393; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |