КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Следствия из преобразований Лоренца
1. Одновременность событий в разных системах отсчета. Пусть в системе К в точках с координатами x1 и х2 в моменты времени t1 и t2 происходят два события. В системе К' им соответствуют координаты и и моменты времени и. Если события в системе К происходят в одной точке (x1=x2)и являются одновременными()то, согласно преобразованиям Лоренца (2.3),,, т. е. эти события являются одновременными и пространственно совпадающими для любой инерциальной системы отсчета. Если события в системе К пространственно разобщены ()но одновременны(), то в системе К', согласно преобразованиям Лоренца (2.3),
Таким образом, в системе К' эти события, оставаясь пространственно разобщенными, оказываются и неодновременными. Знак разности определяется знаком выражения, поэтому в различных точках системы отсчета К' (при разных) разность будет различной по величине и может отличаться по знаку. Следовательно, в одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета, наоборот, второе событие предшествует первому. Сказанное, однако, не относится к причинно-следственным событиям, так как можно показать, что порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета. 2. Длительность событий в разных системах отсчета. Пусть в некоторой точке (с координатой х), покоящейся относительно системы К, происходит событие, длительность которого (разность показаний часов в конце и начале события), где индексы 1 и 2 соответствуют началу и концу события. Длительность этого же события в системе К' , (3.1) причем началу и концу события, согласно (3.3), соответствуют (3.2) Подставляя (3.2) в (3.1), получаем, или . (3.3) Из соотношения (3.3) вытекает, что, т. е. длительность события, происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна. Этот результат может быть еще истолкован следующим образом: интервал времени, отсчитанный по часам в системе К', с точки зрения наблюдателя в системе К, продолжительнее интервала, отсчитанного по его часам. Следовательно, часы, движущиеся относительно инерциальной системы отсчета, идут медленнее покоящихся часов,т. е. ход часов замедляется в системе отсчета, относительно которой часы движутся. На основании относительности понятии «неподвижная» и «движущаяся» системы соотношения для и обратимы. Из (3.3) следует, что замедление хода часов становится заметным лишь при скоростях, близких к скорости распространения света в вакууме. В связи с обнаружением релятивистского эффекта замедления хода часов в свое время возникла проблема «парадокса часов» (иногда рассматривается как «парадокс близнецов»), вызвавшая многочисленные дискуссии. Представим себе, что осуществляется фантастический космический полет к звезде, находящейся на расстоянии 500 световых лет (расстояние, на которое свет от звезды до Земли доходит за 500 лет), со скоростью, близкой к скорости света (). По земным часам полет до звезды и обратно продлится 1000 лет, в то время как для системы корабля и космонавта в нем такое же путешествие займет всего 1 год. Таким образом, космонавт возвратится на Землю в раз более молодым, чем его брат-близнец, оставшийся на Земле. Это явление, получившее название парадокса близнецов, в действительности парадокса не содержит. Дело в том, что принцип относительности утверждает равноправность не всяких систем отсчета, а только инерциальных. Неправильность рассуждения состоит в том, что системы отсчета, связанные с близнецами, не эквивалентны: земная система инерциальна, а корабельная – неинерциальна, поэтому к ним принцип относительности неприменим. Релятивистский эффект замедления хода часов является совершенно реальным и получил экспериментальное подтверждение при изучении нестабильных, самопроизвольно распадающихся элементарных частиц в опытах с -мезонами. Среднее время жизни покоящихся -мезонов (по часам, движущимся вместе с ними) с. Следовательно, -мезоны, образующиеся в верхних слоях атмосферы (на высоте 30 км) и движущиеся со скоростью, близкой к скорости света с, должны были бы проходить расстояния м, т.е. не могли бы достигать земной поверхности, что противоречит действительности. Объясняется это релятивистским эффектом замедления хода времени: для земного наблюдателя срок жизни -мезона, а путь этих частиц в атмосфере. Так как, то. 3. Длина тел в разных системах отсчета. Рассмотрим стержень, расположенный вдоль оси х' и покоящийся относительно системы К'. Длина стержня в системе К' будет, где и – не изменяющиеся со временем координаты начала и конца стержня, а индекс 0 показывает, что в системе отсчета К' стержень покоится. Определим длину этого стержня в системе К, относительно которой он движется со скоростью. Для этого необходимо измерить координаты его концов и в системе К в один и тот же момент времени t. Их разность и определяет длину стержня в системе К. Используя преобразования Лоренца (2.3), получим , т.е. . (3.4) Таким образом, длина стержня, измеренная в системе, относительно которой он движется, оказывается меньше длины, измеренной в системе, относительно которой стержень покоится. Если стержень покоится в системе К, то, определяя его длину в системе К' опять-таки придем к выражению (3.4). Из выражения (3.4) следует, что линейный размер тела, движущегося относительно инерциальной системы отсчета, уменьшается в направлении движения в раз, т.е. так называемое лоренцево сокращение длины тем больше, чем больше скорость движения. Из второго и третьего уравнений преобразований Лоренца (2.3) следует, что и, т. е. поперечные размеры тела не зависят от скорости его движения и одинаковы во всех инерциальных системах отсчета. Таким образом, линейные размеры тела наибольшие в той инерциальной системе отсчета, относительно которой тело покоится. 4. Релятивистский закон сложения скоростей. Рассмотрим движение материальной точки в системе К', в свою очередь движущейся относительно системы К со скоростью. Определим скорость этой же точки в системе К. Если в системе К движение точки в каждый момент времени определяется координатами x, y, z, а в системе К' в момент времени – координатами,то и представляют собой соответственно проекции на оси x, y, z и вектора скорости рассматриваемой точки относительно систем К и К'. Согласно преобразованиям Лоренца (2.3), . Произведя соответствующие преобразования, получаем релятивистский закон сложения скоростей специальной теории относительности: (3.5) Если материальная точка движется параллельно оси х, то скорость и относительно системы К совпадает с ux, а скорость и' относительно К' – с и'x. Тогда закон сложения скоростей примет вид (3.6) Легко убедиться в том, что если скорости и малы по сравнению со скоростью с, то формулы (3.5) и (3.6) переходят в закон сложения скоростей в классической механике. Таким образом, законы релятивистской механики в предельном случае для малых скоростей (по сравнению со скоростью распространения света в вакууме) переходят в законы классической физики, которая, следовательно, является частным случаем механики Эйнштейна для малых скоростей. Релятивистский закон сложения скоростей подчиняется второму постулату Эйнштейна. Действительно, если, то формула (3.6) примет вид
(аналогично можно показать, что при скорость также равна с). Этот результат свидетельствует о том, что релятивистский закон сложения скоростей находится в согласии с постулатами Эйнштейна. Докажем также, что если складываемые скорости сколь угодно близки к скорости с, то их результирующая скорость всегда меньше или равна с. В качестве примера рассмотрим предельный случай. После подстановки в формулу (4.6) получим. Таким образом, при сложении любых скоростей результат не может превысить скорости света с в вакууме. Скорость света в вакууме есть предельная скорость, которую невозможно превысить. Скорость света в какой-либо среде, равная с/п (п – абсолютный показатель преломления среды), предельной величиной не является.
Дата добавления: 2013-12-13; Просмотров: 286; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |