КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Восприятие лекция 25. _1_ оварищи, мне осталось осветить (кратко, конечно) проблему восприятия музыкальных звуков, то есть проблему восприятия музыки
Т Звуковысотный слух Лекция 25 _1_ оварищи, мне осталось осветить (кратко, конечно) проблему восприятия музыкальных звуков, то есть проблему восприятия музыки. Музыкальный слух вообще представляет собой очень сложное образование. Музыка, вид искусства, — творение художественное, и естественно, что проблема восприятия музыки как художественного творения представляется проблемой чрезвычайно обширной, предметом и эстетики, и психологии искусства. Этой стороны (условно будем говорить — эстетической стороны) я сегодня касаться вовсе не буду. Я хочу выделить только один компонент музыкального слуха, правда, решающий, важный, центральный, компонент и проанализировать работу слуховой системы в связи с этим важнейшим компонентом музыкального слуха, а именно с восприятием звуковысотных отношений. Это действительно центральный компонент слухового музыкального восприятия, музыкального слуха, просто потому, что как только мы абстрагируемся от высоты звука, от звуковысотных отношений, так собственно музыкальный слух исчезает, как исчезает и самый предмет музыкального восприятия — музыка. Интервалы, высота, движение интервалов по высоте — все это и составляет тот самый компонент, о котором я сейчас говорю, центральный компонент. В слуховой системе имеется своеобразная подсистема. Или даже можно сказать так: в слухе имеется система звуковысотного слуха, так же как существует система и звукоречевого, то есть тембрового слуха. И как в речи ведущим компонентом является восприятие тембра, так в музыкальном слухе ведущим компонентом, как я только что говорил, является звуковысотный слух. Эта своеобразная система, собственно, построена по той же схеме, как и восприятие тембрового звука. Это значит, что слуховая система ответственна за восприятие звуковысотного отношения, то есть то, что я назвал и буду дальше называть звуковысотным слухом, представляет собою систему, которая обязательно включает моторные звенья. Можно выделить ведущее моторное звено, причем звено специфическое именно для системы звуковысотного слуха. Вы помните, что в речевом слухе ведущим моторным звеном является артику-ляторная моторика, то есть движения артикуляторного аппарата. Это место — главное место — в звуковысотном слухе занимают голосовые связки, их движения. Это тонические движения, выражающиеся в том, что звуковые связки образуют так называемую «звуковую щель», сближаются и изменяются по своему натяжению, если говорить простыми словами. В связи с этим меняется высота локализованного, то есть пропеваемого или проговариваемого — в данном случае лучше сказать «пропеваемо-го», звука, и, соответственно, включается аппарат более широкий, образующий как бы резонанс, то есть те органы, которые образуют как бы анатомическую надстройку над гортанью, снабженной голосовыми связками. звуковысотный слух 219 Существуют две точки зрения на работу самого голосового аппарата, аппарата локализации звуков. Я их укажу, но не буду приводить особенно подробного их анализа просто потому, что, в конце концов, с позиции того, что я буду говорить, безразлично — встанем ли мы на одну точку зрения или на другую — это не меняет основных положений, которые я сегодня хочу изложить. Какие же это две точки зрения? Одна точка зрения классическая, наиболее распространенная и вам, конечно, известная. Она состоит в том, что воздушная струя, образуемая выдыханием воздуха из легкого, проходит через голосовую щель и приводит в движение (вибрацию) голосовые связки. Значит, голосовые связки пассивны. Но они пассивны относительно. Это значит, что от того, в каком состоянии они находятся, зависят все изменения. Что же касается частоты колебаний, частоты, с которой колеблются голосовые связки, то это зависит от их состояния, но вызывается током воздуха так, как это делается в воздушных музыкальных инструментах, которые снабжены генератором звука — пищиком. Правда, у этих инструментов вся высота зависит от надстроечной части, то есть от самого музыкального инструмента, от того корпуса, от того столба воздуха, который там заключен. Все духовые инструменты с пищиками построены по тому же самому принципу. Здесь, собственно, происходит аналогичный процесс. Итак, струя воздуха приводит в колебание голосовые связки. Это точка зрения классическая. Сравнительно недавно появился другой взгляд, который отличается от первого тем, что голосовые связки активно приходят в колебательное движение с помощью специального иннервационного аппарата, то есть они приходят в активное колебательное движение. И их колебания совершаются безотносительно к тому, проходит ли ток воздуха между сближенными связками или нет. Эта точка зрения оспаривается до сих пор, хотя в ее пользу говорят очень важные факты. Я упомяну об этих фактах. Дело все в том, что удалось поставить опыты, прежде всего, над животными, у которых вызывалась голосовая активность в условиях, когда ток воздуха выводился мимо голосовых связок, то есть, попросту говоря, дыхательное горло имело свободный выход в атмосферу, минуя этот голосовой аппарат. Производилось одновременно наблюдение с помощью стробоскопа. Вы, вероятно, знаете, что это за прибор? Это вертушка. Другой вариант — это вспышки. Эффект тот же самый, что и у вертушки, то есть это мгновенное освещение на короткие промежутки времени, причем это регулируемые приборы. Вы можете, регулируя этот прибор (скажем, стробоскоп — диск с вращающимися отверстиями), найти такую частоту, которая совпадает с частотой колебаний, и таким образом получить численное значение этих колебаний. Это, попросту говоря, число колебаний в секунду. Вот и оказалось, что при воздействии, вызывающем голосовую активность, то есть работу голосового аппарата, при отсутствии тока воздуха, который был выведен, все же голосовые связки приходят в колебательное движение. Следовательно, колебательное движение вызывается иннервацией. Надо сказать, что эти опыты были поставлены и на человеке. В сравнительно редких случаях операций, которые требовали выведения дыхательного горла, дыхательных путей вовне, за пределы гортани, за пределы, следовательно, органа, в котором расположены голосовые связки, получались те же результаты. Можно было наблюдать колебательные движения голосовых связок без того, чтобы ток воздуха происходил в голосовой щели, то есть раскачивая эти голосовые связки и таким образом генерируя звук. Тут возникли трудности следующего порядка, чисто физиологические. Дело все в том, что возможная максимальная частота импульсации меньше, чем реально получаемая звуковая частота. Но эта трудность решается тем, что, по-видимому, здесь процесс сдвинут по фазе. То есть часть волокон двигательного нерва возбуж- дается в иные моменты, чем другая часть этих волокон. Понятно? Получается рас-фазовка. И таким образом можно получить очень большие частоты. Достаточно гипотетически допустить несколько каналов, по которым идут центробежные нервные процессы, центрифугальные, и тогда вы получаете расфазовку, достаточную для объяснения возникновения высоких частот, порядка 1000, что, конечно, получить с изолированного нервного волокна невозможно, потому что там передача низкочастотная, просто импульсация с низкими частотами, по сравнению со звуковыми, акустическими частотами. Словом, этот вопрос оказался до сих пор подвешенным, с моей точки зрения. Классическая же точка зрения не является единственной. Но повторяю, на какую бы точку зрения мы ни встали — на ту или на другую — дальнейший анализ от этого не меняется. Я говорил это только потому, что могут возникнуть некоторые вопросы по отношению к тому, что я буду говорить дальше. Таким образом, я резюмирую свою первую мысль. Система звуковысотного слуха построена следующим образом. Имеется соответствующее воздействие на слуховой рецептор и имеется двигательная реакция, здесь выражающаяся в конечном эффекте — в звуковой частоте, возникающей в звуковом аппарате, в звукообразовании; в голосовом аппарате, возникает, соответственно, возможность как бы встречного процесса. В ответ на колебательные действия этого процесса, звуковой волны, имеющего определенную характеристику по основной частоте, возникает соответствующей частоты процесс эффекторный, что и дает возможность анализирования. Этот встречный процесс, встречный анализ, хорошо описан в терминах теории управления, в терминах кибернетики. Это очень известная схема, которая в многочисленных вариантах рассматривается целым рядом авторов. Естественно, что эта система, не включая в себя в качестве специального и решающего звена артикуляторный аппарат, характеризуется своеобразной абстракцией от тембровых звуковысотных характеристик, звуковых характеристик. В чем выражается эта абстракция? А она выражается в очень простом явлении, вам, конечно, отлично известном. Ведь если мы записываем и воспроизводим некоторые звуковы-сотные отношения, скажем музыкальную мелодию, то она остается той же самой безотносительно к тому, воспроизводим ли ее голосом (кстати, чрезвычайно богатым тембровыми характеристиками, окрасками), воспроизводим ли мы ее с помощью однострунного музыкального аппарата или с помощью сложного музыкального инструмента — в фортепьянном исполнении, скрипичном исполнении, тоже чрезвычайно богатом, — в одном диапазоне, в другом диапазоне, мы ее воспримем как данную мелодию, правда? Тембр не играет здесь решающей роли. Он играет роль, когда мы берем не звуковысотный, а музыкальный слух, как я уже говорил, очень сложный. Но тогда имеет известное значение тембровая характеристика. Но все-таки первая, решающая характеристика, то, что называют «предмет музыкального слуха», то есть слух мелодический, звуковысотный, он, конечно, абстрактен по своей природе от тембра. И как речевой слух абстрагируется от основной высоты, подобно этому музыкальный слух, наоборот, абстрагируется от тембровых характеристик. И если говорить грубо и упрощая, то можно сказать, что нам безразлично, каков собственный тембр инструмента, исполняющего мелодию. Это практически всегда наблюдается. Едва ли кто-нибудь, удержавший в памяти то или иное зву-ковысотное движение, ту или другую систему в их временной характеристике, затруднится узнать это при исполнении на инструменте, имеющем совершено иной тембр, чем тот, на котором вы впервые слышали данную мелодию. Вы ее слышали всегда, допустим, в исполнении скрипичном, а затем вы ее слышите в исполнении органа. Вы все равно ее узнаете, правда? Наконец, она может быть просто вам пропе- звуковысотный слух 221 та, причем голосом любого тембра. Больше того — вы можете смещать ее, то есть делать то, что называют музыканты «транспонировать» — от этого не меняется сама зву-ковысотная характеристика. Ну, это естественно, потому что эти отношения, эти интервалы сохраняются те же самые, так же как и их временное распределение. Надо сказать, что представление об особой системе звуковысотного слуха, резко отличающейся от системы тембрового слуха, речевого, потому что звуковысотный слух можно назвать музыкальным условно, отвлекаясь от осложняющих других обстоятельств, эта гипотеза очень хорошо верифицируется и экспериментально проверяется. Некоторое время в лаборатории, которой я руководил здесь, мы занимались довольно упорно исследованием звуковысотного слуха. Я хочу сегодня рассказать о некоторых результатах, которые и были получены в этих исследованиях. С точки зрения поставленных вопросов, это исследование, пожалуй, наиболее прямо отвечает на интересующие нас вопросы. Прежде всего в этом исследовании была применена своеобразная (она была применена впервые и в психологии, и в психофизиологии, и в физиологии, и в музыкальной акустике) методика изучения звуковысотного слуха. Обычная методика заключается в том, что избирается какой-то обыкновенный музыкальный инструмент — иногда это синусоидальный звук, который дает генерирующий звуки различной частоты аудиометр. Его называют электрозвуковым генератором. Существует очень много систем. Они все построены по одинаковому принципу, и я не останавливаюсь на деталях, характеризующих эту в общем-то простую аппаратуру. Словом, задается какой-то звук. Практически при исследовании звуковысотного слуха при поступлении в музыкальные учебные заведения пользуются просто фортепьяно. Иногда пользуются каким-нибудь струнным инструментом, еще чем-нибудь. Каким-то генератором звуков различной высоты. Исследование дифференциальных порогов звуковысотной чувствительности, иначе говоря, способности различения звуков по высоте, проводится методом сравнения звуков, несколько отличающихся по высоте. Или вы двигаетесь от близких по высоте звуков, усиливая различия между ними, до момента, когда испытуемый констатирует различия. Либо, наоборот, вы сближаете разные по высоте звуки до момента их неразличения. Надо сказать, что эта классическая методика имеет следующий недостаток — она не исключает возможности распознавания звуков по высоте, ориентируясь на сопряженные признаки. А они существуют в силу самого устройства слухового аппарата, и существуют также в силу некоторых физических обстоятельств, физических характеристик звука. При изменении высоты в силу специфического устройства органа слухового анализа возникает возможность ориентироваться на некоторые тембровые изменения, при этом возникающие. Я вам могу сказать, что в предельных случаях это особенно ярко выступает. Ведь дело в том, что у нас есть ограничения общего диапазона чувствительности — «не выше чем...», «не ниже чем...» — и это очень важно, потому что тут некоторые гармоники срезаются, но впечатление изменения тембра, признака, достаточно для ориентировки. Так как тембровый слух чрезвычайно высоко развит у человека (я показал это на примере, говоря о речевом слухе), то эти ничтожные изменения достаточны для того, чтобы ориентироваться в звуковысотном отношении по косвенным признакам. Вы поэтому не можете получить очень надежных результатов в исследовании дифференциальной чувствительности в отношении основной частоты или основной высоты (это то же самое) звука. Я не буду здесь вдаваться в подробности. Они очень хорошо выяснены классическими исследователями еще прошлого и начала нашего века, и здесь дело обстоит очень ясно.
Дата добавления: 2013-12-13; Просмотров: 268; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |