КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Газовыделение с поверхностей очистных сооружений
Классификация процессов переработки углеводородных систем по экологической опасности
К основным источникам выбросов диоксида серы относятся (%): дымовые трубы печей (56,9), факельные стояки (19,9), регенераторы установок каталитического крекинга. Следует отметить, что в процессе сжигания топлива наряду с диоксидом образуется триоксид серы (1-5%) путем гомогенного окисления диоксида серы молекулярным или атомарным кислородом, а также путем гетерогенного каталитического окисления сернистого ангидрида. На нефтеперерабатывающих предприятиях основными источниками сероводорода являются: · - неочищенный газ с установки утилизации факельных газов; · - насыщенные растворы моноэтаноламина (МЭА); · - сероводородсодержащий газ с технологических установок очистки и фракционирования газов. Сероводород поступает в атмосферу также за счет его выделения (испарения) из сернисто-щелочных сточных вод и технологических конденсатов (СЩС и ТК), через неплотности технологического оборудования (насосы, компрессоры, арматура), с установок первичной переработки нефти и гидроочистки, термокрекинга, моноэтаноловой очистки и резервуаров совместно с парами нефтепродуктов. Значительными источниками выбросов сероводорода являются бароконденсаторы смешения, а также установки по производству серы. Оксиды азота. Массовым видом выбросов предприятий по переработке УВС являются оксиды азота. Диоксид азота и его фотохимические производные оказывают воздействие не только на органы дыхания, но и на органы зрения. При малых дозах характерны аллергии и раздражения, при больших - бронхиты и трахеиты. Начиная с 0,15 мг/м3, при длительных воздействиях наблюдается увеличение частоты нарушений дыхательных функций и заболеваний бронхитом. Диоксид азота является токсичным, а на солнечном свету конвертирует в оксид с выделением озона, участвующего в образовании фотохимического смога. Одновременные выбросы оксидов азота и серы обусловливают выпадение кислотных дождей. Ежегодно в промышленно развитых странах в воздушный бассейн выбрасывается до 50 млн. т оксидов азота, что превышает их естественный фон в воздухе населенных пунктов. Основными источниками выбросов оксидов азота являются: технологические печи (72,6%), газомоторные компрессоры (14%), факельные стояки (5,4%). Образование NOX связано с окислением азота воздуха и азотсодержащих компонентов самого топлива. В настоящее время существуют три основных механизма образования NO. Образование "воздушного" NO происходит за фронтом пламени в зоне высоких температур по цепному механизму, кинетика которого описывается уравнениями:
В общем виде реакция образования NO представлена уравнением: О2 + N2 ↔ 2NO - 180 кДж/моль. (3.7) Определяющей в образовании NO считается реакция (3.4), скорость которой зависит от концентрации атомарного кислорода, в свою очередь зависящей от максимальной температуры в зоне горения. Образование NO из топлива происходит в два этапа: · - газификация капель мазута с выделением азотсодержащих органических соединений в виде паров и газов; · - реакции окисления паров и газов с образованием NO. Изучено влияние азотсодержащих добавок к метану, на основании чего предложен механизм образования NO по схеме: NH• + O2 ↔ NO + ОН•; (3.8) NO + HO2• ↔ NO2 +ОН• (3.9) Эти реакции обладают рядом особенностей, из которых наиболее существенны следующие: · - скорость образования NO из азота топлива больше, чем из воздуха; · - образование топливного оксида азота происходит в основном в начальной зоне факела; · - конверсия азота топлива в NO увеличивается с повышением коэффициента избытка воздуха, а кислород является определяющим фактором в образовании топливного оксида азота. Термин "быстрый" NO появился в последнее время из-за мгновенного образования в пламени большого количества оксида азота. В общем смысле "быстрым" NO называется оксид азота, образующийся в пламени по механизму, отличному от схем образования "воздушного" и "топливного" NO через промежуточные продукты сгорания группы CN по реакциям: H• + C ↔ CH + N• (3.10) N• + O ↔ NO + H• (3.11) Данные реакции протекают с большой скоростью даже при температурах, когда образование "воздушного" NO практически не происходит. Реакции (3.10) и (3.11) характеризуются относительно слабой зависимостью от температуры. Таким образом, изучение и анализ условий образования "воздушных", "топливных" и "быстрых" оксидов азота и механизмов их образования позволяет наметить методы их подавления непосредственно в топках трубчатых печей. Оксид углерода (II). Монооксид углерода является наиболее опасным и распространенным из газообразных загрязнителей атмосферного воздуха. Оксид углерода(II) опасен тем, что соединяется с гемоглобином крови, в результате чего образуется карбок-сигемоглобин. Повышение уровня карбоксигемоглобина в крови может вызвать нарушение функций центральной нервной системы: ослабевают зрение, реакция, ориентация во времени и пространстве. Особенно опасен этот вид загрязнения для больных с сердечно-сосудистыми заболеваниями. Монооксид углерода характерен для городов и образуется главным образом за счет выхлопных газов автотранспорта (75-97% от всех выбросов оксида углерода(II)). Он образуется также на промышленных предприятиях и относится к продуктам незавершенного горения топлива (наряду с техническим углеродом, углеводородами, включая канцерогенные) при недостатке окислителя (кислорода), неудовлетворительном смешении топлива с воздухом, несовершенстве конструкции горелочных устройств и пр. Условия и механизм появления оксида углерода(II) могут происходить, предположительно, по следующей схеме. Горение углеводородного газа, основу которого составляет метан, проходит стадии последовательных превращений: метан-формальдегид-оксид углерода(II)-оксид углерода(IV. При неблагоприятных условиях (недостаток кислорода, охлаждение зоны горения, качество предварительной подготовки газовоздушной смеси) цепная реакция может оборваться и в продуктах горения будут содержаться оксид углерода(II) и альдегиды. Основными источниками загрязнения атмосферного воздуха оксидом углерода(II) являются трубчатые печи технологических установок, выбросы которых составляют 50% от объема общих выбросов; реакторы установок каталитического крекинга (12%); выхлопы газовых компрессоров (11%); битумные установки (9%) и факелы (18%). Углеводороды. Как было показано выше (табл. 3.1), выбросы углеводородов составляют более 70% выбросов вредных веществ от предприятий нефтепереработки и нефтехимии в атмосферу. Токсичность углеводородов усиливается при наличии в атмосфере сернистых соединений, оксида углерода, что является причиной более низкого значения ПДК сероводорода в присутствии углеводородов, чем в их отсутствие. В зависимости от строения углеводороды вступают в те или иные фотохимические реакции, тем самым, участвуя в образовании фотохимического смога. С технологической точки зрения выбросы углеводородов представляют собой прямые потери нефти и нефтепродуктов. Среднеотраслевой уровень выбросов углеводородов составляет 5,36 кг на 1 т переработанной нефти. Основными источниками выбросов углеводородов в атмосферу являются: · - резервуарные парки (углеводороды выбрасываются в атмосферу из дыхательных клапанов резервуаров за счет испарений с открытых поверхностей); · - технологические установки (выбросы за счет неплотностей технологического оборудования, трубопроводной аппаратуры, сальников насосов, а также из рабочих клапанов при аварийных ситуациях, вентиляционные выбросы из рабочих помещений); · - системы оборотного водоснабжения (испарения углеводородов в нефтеотделителях и градирнях); · - очистные сооружения (испарения с открытых поверхностей нефтеловушек, прудов-отстойников, флотаторов, шламо- и илонакопителей). Причиной значительных выбросов легких углеводородов от технологических установок является отсутствие должной сопряженности мощностей стадий атмосферной перегонки нефти и стадий глубокой стабилизации бензинов и газоразделения легких и жирных углеводородных газов. Так, при отсутствии схемы и условий осуществления глубокой стабилизации прямогонных бензинов происходит значительное испарение в окружающую среду газов пропан-бутановой фракции с одновременным уносом ими бензиновых фракций. При вакуумной перегонке важен выбор схемы и устройства вакуумсоздающих систем, от которых в значительной степени зависит не только степень связи процесса с окружающей средой, но и объемы выброса вредных веществ в окружающую среду. Существующие объекты очистных сооружений и систем оборотного водоснабжения также являются мощным источником загрязнения атмосферы углеводородами. Это - открытые ловушки, различные пруды, биологические очистные сооружения, градирни и колодцы заводской канализации, в которых испаряются углеводороды и другие соединения с поверхности сточных вод. Величины выбросов углеводородов и сероводорода с открытых поверхностей этих объектов представлены в табл. 3.6. Значительное загрязнение атмосферы углеводородами на заводах происходит при заполнении товарными нефтепродуктами железнодорожных цистерн и танкеров на наливных эстакадах и причалах. Твердые вещества. Выбросы твердых веществ связаны, прежде всего, с химическими методами переработки углеводородного сырья, особенно каталитическими. Эти вещества состоят в основном из частиц диаметром от 0,01 до 100 мкм. Химический состав образующейся пыли очень сложен и может вызвать увеличение риска заболевания раком легких, поскольку анализы обычно выявляют присутствие соединений углерода, предельных, ароматических и полициклических углеводородов, тяжелых металлов и др. Выявлена однозначная зависимость между Таблица 3.6
концентрацией пыли в воздухе и хроническими заболеваниями дыхательных путей, в первую очередь, заболеваниями астмой, бронхитом и эмфиземой легких. При повышенных дозах тяжелых металлов, проникающих в организм с пылью, могут возникать нарушения в работе кроветворных органов и центральной нервной системы. Распределение выбросов твердых веществ в атмосферу по основным источникам их выделения следующее (%): · - узлы рассева и пневмотранспорт катализатора - 29,5; · - регенераторы установок каталитического крекинга - 23,3; · - факельные стояки - 4,7; · - вентиляционные системы - 0,7. Как видно из представленных данных, процессы каталитической переработки нефтяного сырья являются одним из основных источников выбросов катализаторной пыли в атмосферу. Низкая эффективность отделения катализаторной пыли на установках каталитического крекинга приводит к неоправданно высоким потерям дорогостоящих катализаторов и значительному загрязнению окружающей среды твердыми выбросами. Другими словами, проблема снижения выбросов твердых веществ связана, прежде всего, с разработкой проектов установок каталитического крекинга и особенно установок повышенной мощности, работающих на утяжеленных и остаточных видах нефтяного сырья. Суперэкотоксиканты. В последние годы из общего числа вредных веществ выделяют те, которые в малых дозах оказывают сильное индуцирующее или ингибирующее действие на ферменты, - так называемые Суперэкотоксиканты. Наиболее распространенным в окружающей среде из суперэкотоксикантов является бенз(а)пирен. Это вещество выделено в качестве индикатора для всей группы канцерогенных полиароматических углеводородов (ПАУ) и имеет ПДКСС, равную 1 нг/м3. В тех объектах, где обнаруживается бенз(а)пирен, как правило, присутствуют и другие ПАУ, среди которых он является одним из сильнейших канцерогенов, образующихся в результате пиролитических реакций. Основным условием образования ПАУ является высокая температура - 800-1000°С, поэтому основными источниками выбросов ПАУ являются дымовые трубы технологических печей и установки производства битума.
Дата добавления: 2013-12-13; Просмотров: 2297; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |