КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Влияние нагрева на структуру и свойства деформированного металла
Деформированный металл находится в неравновесном состоянии. Переход к равновесному состоянию связан с уменьшением искажений в кристаллической решетке, снятием напряжений, что определяется возможностью перемещения атомов. При повышении температуры металла в процессе нагрева после пластической деформации диффузия атомов увеличивается и начинают действовать процессы разупрочнения, приводящие металл в более равновесное состояние – возврат и рекристаллизация. Возврат. Небольшой нагрев вызывает ускорение движения атомов, снижение плотности дислокаций, устранение внутренних напряжений и восстановление кристаллической решетки. Процесс частичного разупрочнения и восстановления свойств называется отдыхом (первая стадия возврата). Имеет место при температуре Т = (0,25... 0,3)Тпл. Возврат уменьшает искажение кристаллической решетки, но не влияет на размеры и форму зерен. Полигонизация – процесс деления зерен на части: фрагменты, полигоны в результате скольжения и переползания дислокаций. При температурах возврата возможна группировка дислокаций одинаковых знаков в стенки, деление зерна малоугловыми границами (рис. 8.2). Рисунок 8.2 - Схема полигонизации: а – хаотическое расположение краевых дислокаций в деформированном металле; б – дислокационные стенки после полигонизации.
В полигонизированном состоянии кристалл обладает меньшей энергией, поэтому образование полигонов — процесс энергетически выгодный. В результате понижается прочность на (10…15) % и повышается пластичность (рис. 8.3). Изменений в микроструктуре не наблюдается (рис. 8.4 а). Рисунок 8.3 - Влияние нагрева деформированного металла на механические свойств
Рисунок 8.4 - Изменение структуры деформированного металла при нагреве
При нагреве до достаточно высоких температур подвижность атомов возрастает и происходит рекристаллизация. Рекристаллизация – процесс зарождения и роста новых недеформированных зерен при нагреве наклепанного металла до определенной температуры. Нагрев металла до температур рекристаллизации сопровождается резким изменением микроструктуры и свойств. Нагрев приводит к резкому снижению прочности при одновременном возрастании пластичности. Также снижается электросопротивление и повышается теплопроводность. 1 стадия – первичная рекристаллизация заключается в образовании центров кристаллизации и росте новых равновесных зерен с неискаженной кристаллической решеткой. Новые зерна возникают у границ старых зерен и блоков, где решетка была наиболее искажена. Количество новых зерен постепенно увеличивается и в структуре не остается старых деформированных зерен. 2 стадия – собирательная рекристаллизация заключается в росте образовавшихся новых зерен. Движущей силой является поверхностная энергия зерен. При мелких зернах поверхность раздела большая, поэтому имеется большой запас поверхностной энергии. При укрупнении зерен общая протяженность границ уменьшается, и система переходит в более равновесное состояние. Температура начала рекристаллизации связана с температурой плавления Трек = αТпл, для металлов α = 0,4; для твердых растворов α = 0,5... 0,8. На свойства металла большое влияние оказывает размер зерен, получившихся при рекристаллизации. Основными факторами, определяющими величину зерен металла при рекристаллизации, являются температура, продолжительность выдержки при нагреве и степень предварительной деформации. С повышением температуры происходит укрупнение зерен, с увеличением времени выдержки зерна также укрупняются. Наиболее крупные зерна образуются после незначительной предварительной деформации 3…10 %. Такую деформацию называют критической. Такая деформация нежелательна перед проведением рекристаллизационного отжига. Практически рекристаллизационный отжиг проводят для малоуглеродистых сталей при температуре 600…700 °С, для латуней и бронз – 560…700 °С, для алюминевых сплавов – 350…450 °С, для титановых сплавов – 550…750 °С.
Лекция 9.
Диаграмма состояния железо – углерод.
Железоуглеродистые сплавы – стали и чугуны – важнейшие металлические сплавы современной техники. Начало изучению диаграммы железо – углерод положил Чернов Д.К. в 1868 году. Чернов впервые указал на существование в стали критических точек и на зависимость их положения от содержания углерода. Диаграмма железо - углерод должна распространяться от железа до углерода. Железо образует с углеродом химическое соединение: цементит - Fe3C. Каждое устойчивое химическое соединение можно рассматривать как компонент, а диаграмму - по частям. Так как на практике применяют металлические сплавы с содержанием углерода до 5 %, то рассматриваем часть диаграммы состояния от железа до химического соединения цементита, содержащего 6.67% углерода. Диаграмма состояния железо – цементит представлена на рисунке 9.1. Рисунок 9.1 - Диаграмма состояния железо - цементит
Компоненты и фазы железоуглеродистых сплавов.
Компонентами железоуглеродистых сплавов являются железо, углерод и цементит. 1. Железо – переходный металл серебристо-светлого цвета. Имеет высокую температуру плавления – 1539 °С± 5 °С. В твердом состоянии железо может находиться в двух модификациях. Полиморфные превращения происходят при температурах 911° С и 1392° С. При температуре ниже 911° С существует Feα с объемно-центрированной кубической решеткой. В интервале температур 911…1392° С устойчивым является Feγ с гранецентрированной кубической решеткой. Выше 1392° С железо имеет объемно-центрированную кубическую решетку и называется Feδ или высокотемпературное Feα. Высокотемпературная модификация Feα не представляет собой новой аллотропической формы. Критическую температуру 911° С превращения Feα ↔ Feγ обозначают точкой A3, а температуру 1392° С превращения Feα ↔ Feγ - точкой А4. При температуре ниже 768o С железо ферромагнитно, а выше – парамагнитно. Точка Кюри железа 768° С обозначается А2. Железо технической чистоты обладает невысокой твердостью (80 НВ) и прочностью (предел прочности – σв = 250 МПа, предел текучести – σ т = 120 МПа) и высокими характеристиками пластичности (относительное удлинение – δ = 50%, а относительное сужение – ψ = 80%). Свойства могут изменяться в некоторых пределах в зависимости от величины зерна. Железо со многими элементами образует растворы: с металлами – растворы замещения, с углеродом, азотом и водородом – растворы внедрения. 2. Углерод относится к неметаллам. Обладает полиморфным превращением, в зависимости от условий образования существует в форме графита с гексагональной кристаллической решеткой (температура плавления – 3500 °С, плотность – 2,5 г/см3) или в форме алмаза со сложной кубической решеткой с координационным числом равным четырем (температура плавления – 5000 °С). В сплавах железа с углеродом углерод находится в состоянии твердого раствора с железом и в виде химического соединения – цементита (Fe3C), а также в свободном состоянии в виде графита (в серых чугунах). 3. Цементит (Fe3C) – химическое соединение железа с углеродом (карбид железа), содержит 6,67 % углерода. Аллотропических превращений не испытывает. Кристаллическая решетка цементита состоит из ряда октаэдров, оси которых наклонены друг к другу. Температура плавления цементита точно не установлена (~1550 °С). При низких температурах цементит слабо ферромагнитен, магнитные свойства теряет при температуре около 217 ° С. Цементит имеет высокую твердость (более 800 НВ, легко царапает стекло), но чрезвычайно низкую пластичность. Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов: азотом, кислородом; атомы железа – металлами: марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цементитом. Цементит – соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита. Этот процесс имеет важное практическое значение при структурообразовании чугунов. В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит. 1. Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы. 2. Феррит (Ф) Feα (C) – твердый раствор внедрения углерода в α-железо. Феррит имеет переменную предельную растворимость углерода: минимальную ~ 0,006 % при комнатной температуре (точка Q), максимальную – 0,02 % при температуре 727o С (точка P). Углерод располагается в дефектах решетки. При температуре выше 1392o С существует высокотемпературный феррит (δ), с предельной растворимостью углерода 0,1 % при температуре 1499o С (точка J) Свойства феррита близки к свойствам железа. Он мягок (твердостьσ– 130 НВ, предел прочности – σв = 300 МПа) и пластичен (относительное удлинение – δ = 30%), магнитен до 768 °С. 3. Аустенит (А) – твердый раствор внедрения углерода в γ-железо. Углерод занимает место в центре гранецентрированной кубической ячейки. Аустенит имеет переменную предельную растворимость углерода: минимальную – 0,8 % при температуре 727° С (точка S), максимальную – 2,14 % при температуре 1147° С (точка Е). Аустенит имеет твердость 200…250 НВ, пластичен (относительное удлинение — δ = 40... 50%), парамагнитен. При растворении в аустените других элементов могут изменяться свойства и температурные границы существования. 4. Цементит – характеристика дана выше. В железоуглеродистых сплавах присутствуют фазы: цементит первичный (ЦI), цементит вторичный (ЦII), цементит третичный (ЦIII). Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.
Процессы при структурообразовании железоуглеродистых сплавов.
Линия АВСD – ликвидус системы. На участке АВ начинается кристаллизация феррита (δ), на участке ВС начинается кристаллизация аустенита, на участке СD – кристаллизация цементита первичного. Линия AHJECF – линия солидус. На участке АН заканчивается кристаллизация феррита (δ). На линии HJB при постоянной температуре 1499°С идет перетектическое превращение, заключающееся в том, что жидкая фаза реагирует с ранее образовавшимися кристаллами феррита (δ), в результате чего образуется аустенит: L+Ф(δ) → А На участке JЕ заканчивается кристаллизация аустенита. На участке ECF при постоянной температуре 1147°С идет эвтектическое превращение, заключающееся в том, что жидкость, содержащая 4,3 % углерода превращается в эвтектическую смесь аустенита и цементита первичного: L4,3 → эвт.(А+ЦI) Эвтектика системы железо — цементит называется ледебуритом (Л), по имени немецкого ученого Ледебура, содержит 4,3% углерода. При температуре ниже 727°С в состав ледебурита входят цементит первичный и перлит, его называют ледебурит перлитный (ЛП). По линии HN начинается превращение феррита (δ) в аустенит, обусловленное полиморфным превращением железа. По линии NJ превращение феррита (δ) в аустенит заканчивается. По линии GS превращение аустенита в феррит, обусловленное полиморфным превращением железа. По линии PG превращение аустенита в феррит заканчивается. По линии ES начинается выделение цементита вторичного из аустенита, обусловленное снижением растворимости углерода в аустените при понижении температуры. По линии МО при постоянной температуре 768°С имеют место магнитные превращения. По линии PSK при постоянной температуре 727°С идет эвтектоидное превращение, заключающееся в том, что аустенит, содержащий 0,8% углерода, превращается в эвтектоидную смесь феррита и цементита вторичного: А0,8 →эвт.(Ф+ЦII) По механизму данное превращение похоже на эвтектическое, но протекает в твердом состоянии. Эвтектоид системы железо – цементит называется перлитом (П), содержит 0,8% углерода. Название получил за то, что на полированном и протравленном шлифе наблюдается перламутровый блеск. Перлит может существовать в зернистой и пластинчатой форме, в зависимости от условий образования. По линии PQ начинается выделение цементита третичного из феррита, обусловленное снижением растворимости углерода в феррите при понижении температуры. Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо – цементит, т.е. критические точки, имеют условные обозначения. Обозначаются буквой А (от французского arret – остановка): А1 – линия PSK (727°С) – превращение П ↔А; A2 – линия MO (768°С, т. Кюри) – магнитные превращения; A3 – линия GOS (переменная температура, зависящая от содержания углерода в сплаве) — превращение Ф ↔А; A4 – линия NJ (переменная температура, зависящая от содержания углерода в сплаве) — превращение; А↔Ф(δ) Acm – линия SE (переменная температура, зависящая от содержания углерода в сплаве) – начало выделения цементита вторичного (иногда обозначается A3). Так как при нагреве и охлаждении превращения совершаются при различных температурах, чтобы отличить эти процессы вводятся дополнительные обозначения. При нагреве добавляют букву с, т.е Ас1, при охлаждении – букву r, т. е. Ar1.
Структуры железоуглеродистых сплавов
Все сплавы системы железо – цементит по структурному признаку делят на две большие группы: стали и чугуны. Особую группу составляют сплавы с содержанием углерода менее 0,02% (точка Р), их называют техническое железо. Структура таких сплавов после окончания кристаллизации состоит или из зерен феррита, при содержании углерода менее 0,005 %, или из зерен феррита и кристаллов цементита третичного, расположенных по границам зерен феррита, если содержание углерода от 0,005 до 0,02 %. Углеродистыми сталями называют сплавы железа с углеродом, содержащие 0,02…2,14 % углерода, заканчивающие кристаллизацию образованием аустенита. Структура сталей формируется в результате перекристаллизации аустенита. Микроструктуры сталей представлены на рисунке 9.2.
Рисунок 9.2 - Микроструктуры сталей: а – доэвтектоидная сталь (Ф+П); б – эвтектоидная сталь (пластинчатый перлит); в – эвтектоидная сталь (зернистый перлит); г – заэвтектоидная сталь (П+ЦII).
По содержанию углерода и по структуре стали подразделяются на доэвтектоидные (0.2%<C<0.8%), структура феррит + перлит Ф+П (рис. 9.2 а); эвтектоидные (С = 0,8%), структура перлит (П), перлит может быть пластинчатый или зернистый (Рисунок 9.2 б и 9.2 в); заэвтектоидные (0,8%<C<2.14%), структура перлит + цементит вторичный (П + ЦII), цементитная сетка располагается вокруг зерен перлита. По микроструктуре сплавов можно приблизительно определить количество углерода в составе сплава, учитывая следующее: количество углерода в перлите составляет 0,8 %, в цементите – 6,67 %. Ввиду малой ратворимости углерода в феррите, принимается, что в нем углерода нет. Сплавы железа с углеродом, содержащие углерода более 2,14 % (до 6,67 %), заканчивающие кристаллизацию образованием эвтектики (ледебурита), называют чугунами. Наличие легкоплавкого ледебурита в структуре чугунов повышает их литейные свойства. Чугуны, кристаллизующиеся в соответствии с диаграммой состояния железо – цементит, отличаются высокой хрупкостью. Цвет их излома – серебристо-белый. Такие чугуны называются белыми чугунами. Микроструктуры белых чугунов представлены на рисунке 9.3.
Рисунок 9.3 – Микроструктуры белых чугунов: а – доэвтектический белый чугун(П+Л+ЦII); б – эвтектический белый чугун (Л); в – заэвтектический белый чугун (Л+ЦI).
По количеству углерода и по структуре белые чугуны подразделяются на: доэвтектические >(2/14%<C<4.3%), структура перлит + ледебурит + цементит вторичный (П+Л+ЦII); эвтектические (C=4.3%), структура ледебурит (Л) (рис. 9.3 б); заэвтектические (4.3%<C<6.67%), структура ледебурит + цементит первичный (Л+ЦI) (рис. 9.3 в). В структуре доэвтектических белых чугунов присутствует цементит вторичный, который образуется в результате изменения состава аустенита при охлаждении (по линии ES). В структуре цементит вторичный сливается с цементитом, входящим в состав ледебурита.
Дата добавления: 2013-12-13; Просмотров: 3054; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |