Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ультразвуком (УЗ) называют механические колебания и волны с частотами более 20 кГц




Ультразвук и его применения в медицине

Верхним пределом ультразвуковых частот условно можно счи­тать 109—1010 Гц. Этот предел определяется межмолекулярными расстояниями и поэтому зависит от агрегатного состояния веще­ства, в котором распространяется ультразвуковая волна.

Для генерирования УЗ используются устройства, называемые УЗ-излучателями. Наибольшее распространение получили элек­тромеханические излучатели, основанные на явлении обратного пьезоэлектрического эффекта. Обратный пьезоэффект заключается в механической деформации тел под действием элект­рического поля. Основной частью такого излучателя (рис. 6.13, а) является пластина или стержень 1 из вещества с хорошо выражен­ными пьезоэлектрическими свойствами (кварц, сегнетова соль, ке­рамический материал на основе титаната бария и др.). На поверх­ность пластины в виде проводящих слоев нанесены электроды 2. Если к электродам приложить переменное электрическое напряже­ние от генератора 3, то пластина благодаря обратному пьезоэффекту начнет вибрировать, излучая механическую волну соответствую­щей частоты.

Наибольший эффект излучения механической волны возникает при выполнении условия резонанса (см. § 5.5). Так, для пластин толщиной 1 мм резонанс возникает для кварца на частоте 2,87 МГц, сегнетовой соли — 1,5 МГц и титаната бария — 2,75 МГц.

Приемник УЗ можно создать на осно­ве пьезоэлектрического эффекта (пря­мой пьезоэффект). В этом случае под действием механической волны (УЗ-вол-ны) возникает деформация кристалла (рис. 6.13, б), которая приводит при пьезоэффекте к генерации переменно­го электрического поля; соответствую­щее электрическое напряжение может быть измерено.

Применение УЗ в медицине связано с особенностями его распространения и характерными свойствами. Рассмот­рим этот вопрос.

По физической природе УЗ, как и звук, является механической (упругой)

 

волной. Однако длина волны УЗ существенно меньше длины звуко­вой волны. Так, например, в воде длины волн равны 1,4 м (1 кГц, звук), 1,4 мм (1 МГц, УЗ) и 1,4 мкм (1 ГГц, УЗ). Дифракция волн существенно зависит от соотношения длины волны и размеров тел, на которых волна дифрагирует. Непрозрачное (для звука) тело размером 1 м не будет препятствием для звуковой волны с длиной 1,4 м, но станет преградой для УЗ-волны с длиной 1,4 мм: возникнет «УЗ-тень». Это позволяет в некоторых случаях не учиты­вать дифракцию УЗ-волн, рассматривая при преломлении и отраже­нии эти волны как лучи (аналогично преломлению и отражению световых лучей).

Отражение УЗ на границе двух сред зависит от соотношения их волновых сопротивлений. Так, УЗ хорошо отражается на границах мышца — надкостница — кость, на поверхности по­лых органов и т. д. Поэтому можно определить расположение и размер неоднородных включений, полостей, внутренних органов и т. п. (УЗ-локация). При УЗ-локации используют как непрерыв­ное, так и импульсное излучения. В первом случае исследуется стоячая волна, возникающая при интерференции падающей и от­раженной волн от границы раздела. Во втором случае наблюдают отраженный импульс и измеряют время распространения ультра­звука до исследуемого объекта и обратно. Зная скорость распрост­ранения ультразвука, определяют глубину залегания объекта.

Волновое сопротивление биологических сред в 3000 раз больше волнового сопротивления воздуха. Поэтому если УЗ-излучатель приложить к телу человека, то УЗ не проникнет внутрь, а будет от­ражаться из-за наличия тонкого слоя воздуха между излучателем и биологическим объектом (см. § 6.4). Чтобы исключить воздуш­ный слой, поверхность УЗ-излучателя покрывают слоем масла.

Скорость распространения ультразвуковых волн и их поглоще­ние существенно зависят от состояния среды; на этом основано ис­пользование ультразвука для изучения молекулярных свойств ве­щества. Исследования такого рода являются предметом молеку­лярной акустики.

Как видно из (5.56), интенсивность волны пропорциональна квадрату круговой частоты, поэтому можно получить УЗ значи­тельной интенсивности даже при сравнительно небольшой ампли­туде колебаний. Ускорение частиц, колеблющихся в УЗ-волне, также может быть большим [см. (5.14)], что говорит о наличии су­щественных сил, действующих на частицы в биологических тка­нях при облучении УЗ.

Сжатия и разрежения, создаваемые ультразвуком, приводят к образованию разрывов сплошности жидкости — кавитаций.

Кавитации существуют недолго и быстро захлопываются, при этом в небольших объемах выделяется значительная энергия, происходит разогревание вещества, а также ионизация и диссо­циация молекул.

Физические процессы, обусловленные воздействием УЗ, вызы­вают в биологических объектах следующие основные эффекты:

—микровибрации на клеточном и субклеточном уровне;

—разрушение биомакромолекул;

—перестройку и повреждение биологических мембран, изме­
нение проницаемости мембран (см. гл. 11);

—тепловое действие;

—разрушение клеток и микроорганизмов.

Медико-биологические приложения ультразвука можно в ос­новном разделить на два направления: методы диагностики и исследования и методы воздействия.

К первому направлению относятся локационные методы с ис­пользованием главным образом импульсного излучения. Это эхо-энцефалография — определение опухолей и отека головного моз­га (на рис. 6.14 показан эхоэнцефалограф «Эхо-12»); ультразву­ковая кардиография — измерение размеров сердца в динамике; в офтальмологии — ультразвуковая локация для определения размеров глазных сред. С помощью ультразвукового эффекта До­плера изучают характер движения сердечных клапанов и измеря­ют скорость кровотока. С диагностической целью по скорости ультразвука находят плотность сросшейся или поврежденной кости.

Ко второму направлению относится ультразвуковая физио­терапия. На рис. 6.15 показан используемый для этих целей ап­парат УТП-ЗМ. Воздействие ультразвуком на пациента произво­дят с помощью специальной излучательной головки аппарата.




Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 979; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.