Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Биоэлектрогенез

Процессы переноса в биологических системах.

Биологические мембраны

Биологические мембраны являются важной частью клетки. Они ограничивают клетку от окружающей среды, защищают ее от вредных внешних воздействий, управляют обменом веществ между клеткой и ее окружением, способствуют генерации электрических потенциалов, участвуют в синтезе универсаль­ного аккумулятора энергии - аденозинтрифосфорной кислоты (АТф) в митохондриях и т. д. По существу, мембраны форми­руют структуру клетки и осуществляют ее функции. Нарушение функций клеточной и внутриклеточной мембран лежит в осно­ве необратимого повреждения клеток и, как следствие, разви­тия тяжелых заболеваний сердечно-сосудистой, нервной, эн­докринной систем и пр.

Все клетки окружены мембранами. Без мембраны содержимое клетки просто бы растеклось, диффузия привела бы к термодинамическому равновесию, что означает отсутствие жизни.

Несмотря на разнообразие биологических функций и форм, все мембраны построены в основном из липидов и белков. Липидная молеку­ла состоит из двух частей: несущей электрические заряды (поляр­ной) головки, на которую приходится, как правило, четверть длины всей молекулы (рис. 1), и длинных хвостов, не несу­щих электрического заряда (гидрофобных). Хвосты липидной мо­лекулы — это длинные цепи, построенные из атомов углерода и водорода (остатки жирных кислот). Головки могут иметь разнооб­разное строение, однако они заряжены либо отрицательно, либо нейтральны. Связующим звеном между хвостом и головкой чаще всего служит остаток глицерина.

Любая мембрана своей структурной основой имеет липидный бислой, со­стоящий из двух мономолекулярных пленок липидов, обращен­ных друг к другу гидрофобными хвостами и контактирующих с окружающей средой полярными головками (рис. 2). Во всех мембранах бислой выполняет две основные функции: матрич­ную и барьерную. С одной стороны, бислой является структурной основой для размещения основных рецепторных и ферментных систем клетки, с другой стороны, двойной слой липидов является преградой для ионов и водорастворимых молекул.



Рис. 1

Рис. 2

Первая попытка представить молекулярную организацию био­логической мембраны принадлежит Даниели и Давсону, которые в 1935 г. предложили модель клеточной мембраны.

Мембрана по своей структуре напоминает плоский конденсатор, обкладки которого образованы поверхностными белками, а роль диэлектрика выполняет липидный бислой. Емкость такого конден­сатора составляет значительную величину (табл. 18). Используя формулу плоского конденсатора, можно оценить диэлектрическую проницаемость гидрофобной и гидрофильной областей мембран, зная пределы изменения толщины мембраны. Такие оценки дают для фосфолипидной области мембраны значение = 2,0—2,2, а для гидрофильной части = 10—20.

В табл.1 приведены некоторые физические параметры биоло­гических мембран и в сравнении с ними — те же параметры для искусственно приготовленных липидных бислоев.

Таблица 1. Физические свойства биологических мембран и липидных бислоев

Физические параметры Биологические мембраны Липидные бислой
Толщина, нм 4—13 4,6—9,0
Электрическое сопротивление, Ом • см2 102—105 103_109
Электроемкость, мкФ • см"2 0,5—1,3 0,3—1,3
Потенциал покоя, мВ 20—200 0—140
Показатель преломления 1,55 1,37
Поверхностное натяжение, мН • м"1 0,03—3 0,2—6,0
Коэффициент проницаемости для воды,    
10"4см • с"1 25—33 5—10
Напряжение пробоя, мВ   150—200
Плотность липидного бислоя, кг/м3   760—900
Эффективный модуль упругости, Па 0,45 0,3—0,5

 

Мембраны обладают высокой прочностью на разрыв, устойчи­востью и гибкостью. По электроизоляционным свойствам они значительно превосходят многие изоляционные материалы, при­меняемые в технике. Общая площадь мембран в органах и тканях достигает огромных размеров. Так, суммарная площадь клеточ­ных мембран печени крысы, весящей всего 6 г, составляет не­сколько сотен квадратных метров. Клетки, как правило, имеют микроскопические размеры, поэтому отношение их поверхности к объему очень велико. Благодаря этому клетки располагают до­статочной площадью для обеспечения многочисленных процес­сов, протекающих на мембранах. Одним из наиболее важных из них является процесс переноса веществ из клетки и в клетку.

<== предыдущая лекция | следующая лекция ==>
Нагретых и холодных сред, используемых для лечения. Применение низких температур в медицине | Уравнение Нернста—Планка. Перенос ионов через мембраны
Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 1036; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.