Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод угловых точек

Пространственная задача. Действие равномерно распределенной нагрузки.

Плоская задача. Действие равномерно распределенной нагрузки.

Задача о действии вертикальной сосредоточенной силы.

Определение напряжений в грунтовом массиве от действия местной нагрузки на его поверхности.

Лекция 4.

 

Распределение напряжений в основании зависит от формы фундамента в плане. В строительстве наибольшее распространение получили ленточные, прямоугольные и круглые фундаменты. Таким образом, основное практическое значение имеет расчет напряжений для случаев плоской, пространственной и осесимметричной задач.

Напряжения в основании определяется методами теории упругости. Основание при этом рассматривается как упругое полупространство, бесконечно простирающееся во все стороны от горизонтальной поверхности загружения.

Решение задачи о действии вертикальной сосредоточенной силы, приложенной к поверхности упругого полупространства полученное в 1885 г. Ж. Буссинеском, позволяет определить все компоненты напряжений и деформаций в любой точке полупространства от действия силы (рис. 3.4.а).

 

 

 


Вертикальные напряжения определяются по формуле:

 

, где . (3.6)

Используя принцип суперпозиции можно определить значение вертикального сжимающего напряжения в точке при действии нескольких сосредоточенных сил, приложенных на поверхности (рис. 3.4.б):

(3.7)

В 1892 г. Фламан получил решение для вертикальной сосредоточенной силы в условиях плоской задачи (рис. 3.4.в):

; ; , где (3.8)

Зная закон распределения нагрузки на поверхности в пределах контура загружения, можно, интегрируя выражение (3.6) в пределах этого контура, определить значения напряжений в любой точке основания для случая осесимметричной и пространственной нагрузки (рис. 3.5.), а интегрируя выражение (3.8) – для случая плоской нагрузки.


 

Схема для расчета напряжений в основании в случае плоской задачи при действии равномерно распределенной нагрузки интенсивностью показана на рис. 3.6.а.

Точные выражения для определения компонент напряжений в любой точке упругого полупространства были получены Г. В. Колосовым в виде:

; ; , (3.9)

где , , - коэффициенты влияния, зависящие от безразмерных параметров и ; и – координатные точки, в которой определяются напряжения; – ширина полосы загружения.

На рис. 3.7. а-в показано в виде изолиний распределение нарпряжении , и в массиве грунте для случая плоской задачи.

 
 

 


 

 

В некоторых случаях при анализе напряженного состояния основания оказывается удобнее пользоваться главными напряжениями. Тогда значения главных напряжений в любой точке упругого полупространства под действием полосовой равномерно распределенной нагрузки можно определить по формулам И. Х. Митчелла:

, (3.10)

где - угол видимости, образованный лучами, выходящими из данной точки к краям загруженной полосы (рис.3.6.б).

В 1935 г. А. Лявом были получены значения вертикальных сжимающих напряжений в любой точке основания от действия нагрузки интенсивностью , равномерно распределенной по площади прямоугольника размером .

Практический интерес представляют компоненты напряжений , относящиеся к вертикали, проведенной через угловую точку этого прямоугольника, и , действующие по вертикали, проходящей через его центр (рис. 3.8.).

 

 


Используя коэффициенты влияния можно записать:

; , (3.11)

где - и - соответственно коэффициенты влияния для угловых и центральных напряжений, зависящие от соотношения сторон загруженного прямоугольника и относительной глубины точки, в которой определяются напряжения.

Между значениями и имеется определенное соотношение.

. (3.12)

Тогда оказывается удобным выразить формулы (3.11) через общий коэффициент влияния и записать их в виде:

; . (3.13)

Коэффициент зависит от безразмерных параметров и : , (при определении углового напряжения ), (при определении напряжения под центром прямоугольника ).

 

Метод угловых точек позволяют определить сжимающие напряжения в основании по вертикали, проходящей через любую точку поверхности. Возможны три варианта решения (рис.3.9.).

Пусть вертикаль проходит через точку , лежащую на контуре прямоугольника. Разделив этот прямоугольник на два так, чтобы точка М являлась угловой для каждого из них, можно представить напряжения как сумму угловых напряжений I и II прямоугольников, т.е.

. (3.13)

Если точка лежит внутри контура прямоугольника, то его следует разделить на четыре части так, чтобы эта точка являлась угловой для каждого составляющего прямоугольника. Тогда:

. (3.14)

Наконец, если точка лежит вне контура загруженного прямоугольника, то его нужно достроить так, чтобы эта точка вновь оказалась угловой.

. (3.15)

 

<== предыдущая лекция | следующая лекция ==>
Распределение напряжений в грунтовых основаниях от собственного веса грунта | Прочность и устойчивость грунтовых массивов. Давление грунтов на ограждения
Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 1065; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.065 сек.