Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Способы увеличения скорости процесса




Одной из основных задач технологии является использование всех путей для увеличения скорости технологического процесса и соответствующего повышения производительности аппаратуры. Анализ направлений интенсификации химико-технологических процессов производится при помощи основных формул скорости процесса, согласно которым для повышения скорости процесса следует найти способы увеличения определяющих величин Ac, k и F(v). Увеличение движущей силы процесса Дс может быть достигнуто: а) возрастанием концентраций взаимодействующих компонентов в исходных материалах (сырье); б) повышением давления; в) регулированием температуры процесса; г) отводом продуктов реакции из реакционного объема с целью сдвига равновесия в сторону продукта. Движущая сила химических реакций, процессов абсорбции, адсорбции и конденсации выражается через разности действительных с и равновесных с* концентраций реагирующих веществ (с--с*). Поэтому увеличение движущей силы процесса может осуществляться или увеличением с, или уменьшением с*, или одновременным соответствующим изменением обеих величин.

Увеличение концентрации взаимодействующих компонентов в исходном сырье повышает с и пропорционально увеличивает скорость процесса. Способ увеличения концентрации взаимодействующих компонентов в исходном сырье зависит от агрегатного состояния материала. Увеличение содержания полезного составляющего в твердом сырье называется обогащением, а в жидком и газообразном - концентрированием. Увеличение концентрации взаимодействующих веществ - это один из самых распространенных приемов для интенсификации процессов.

Повышение давления влияет на скорость процесса (скорость достижения равновесного состояния обратимых процессов) и состояние равновесия. Давление сильно влияет на скорость процессов, идущих в газовой фазе или же при взаимодействии газов с жидкостями и твердыми телами. В гомогенных процессах, протекающих в газовой фазе или в гетерогенных с участием газообразных компонентов, повышение давления уменьшает объем газовой фазы и соответственно увеличивает концентрации взаимодействующих веществ. Таким образом, повышение давления равносильно росту концентрации реагентов. Влияние давления определяется кинетическими уравнениями.

Таким образом, скорость реакции взаимодействия газовых ком-понентов пропорциональна давлению в степени, равной порядку реакции. Давление наиболее сильно интенсифицирует реакции высокого порядка. Однако рост давления может привести к изменению порядка реакции и уменьшению константы скорости процесса k.

В промышленности широко применяют повышенное давление для ускорения абсорбции. Для процессов десорбции газов и испарения жидкостей ускорение процесса и повышение выхода достигается снижением давления, т. е. применением вакуума.

Значения равновесных парциальных давлений (концентраций) компонентов рА* и рв* рассчитываются для заданного состава газовой смеси по известным константам равновесия.

Для обратимых газовых реакций, протекающих с уменьшением объема, скорость реакции и выход, продукта будут возрастать с повышением давления за счет увеличения действительных концентраций (парциальных давлений) компонентов р и рв и понижения равновесных парциальных давлений /?л* и рв*, т.е. сдвига равновесия в сторону продукта. Выход продукта по такой реакции непрерывно увеличивается при повышении давления. Однако градиент увеличения выхода с повышением давления непрерывно снижается, поэтому, слишком высокие давления применять невыгодно, особенно в тех случаях, когда газовая смесь содержит значительные количества инертных примесей.

Рациональное давление колеблется для различных процессов от одной десятой до нескольких десятков мегапаскалей (от одной до нескольких сотен атмосфер). Многие важные производственные процессы, такие, как синтез аммиака, метанола, производство бензина гидрированием тяжелого топлива и ряд других реакций газовых компонентов, которые проходят с уменьшением объема, осуществлены в промышленности только благодаря приме-Пению высоких давлений (свыше 10 МПа).

Для обратимых газовых реакций, идущих с увеличением объема, давление сказывается положительно вдали от состояния равновесия за счет роста действительных парциальных давлений исходных компонентов рА и рв. Однако при приближении к равновесию выход продукта проходит через максимум и затем снижается.

В промышленности применение повышенного давления при проведении газовых реакций, идущих с увеличением объема, как правило, связано с теми выгодами, которые получают от использования давления в предыдущих или последующих операциях производства. Например, конверсию метана с водяным паром или окисление аммиака экономично проводить под давлением, так как оно благоприятно влияет на последующие процессы технологической системы.

Для процессов с участием газовой фазы применяются давления порядка одной и нескольких десятков мегапаскалей (десятков и сотен атмосфер). Для процессов полимеризации и других синтезов в жидкой фазе эффективны давления в сотни МПа.

В твердофазных процессах ввиду незначительной сжимаемости твердых тел эффективными являются лишь сверхвысокие давления, вызывающие перестройку электронных оболочек, деформацию кристаллов и сдвиг фазового равновесия. Так, из углерода, растворенного в металлических расплавах при сверхвысоких давлениях до 10 тыс. МПа и температурах до 2400°С, производят искусственные алмазы.

3. Регулирование температуры процесса как средство повышения движущей силы применяется главным образом в сорбционных и десорбционных процессах. Понижая температуру жидкой фазы, уменьшают парциальное давление паров газового (парового) компонента над ней, и со-ответственно увеличивают движущую силу Дс и общую скорость процесса.

4. Отвод продуктов реакции из реакционной зоны увеличивает суммарную скорость обратимой реакции за счет уменьшения или увеличивает движущую силу гетерогенного процессов.

В химических реакциях повышение температуры увеличивает скорость благодаря росту константы скорости к.

Из газовой смеси продукт реакции может отводиться конденсацией, избирательной абсорбцией или адсорбцией. Во многих производствах для этого газовую смесь выводят из реакционного аппарата, а затем после отделения продукта (конденсации, абсорбции) вновь вводят в аппарат - получаются замкнутые (циклические, круговые) процессы, например синтез аммиака, синтезы спиртов и т.п. В этих случаях реакция в газовой фазе происходит стадиями. В каждой стадии концентрация продукта с* возрастает до максимально допустимой величины, а затем снижается до величины, близкой к нулю при абсорбции (в меньшей мере при конденсации), затем цикл может повторяться многократно. Из жидкий смеси продукт реакции отводится в зависимости от его свойств осаждением в виде кристаллов, десорбцией (испарением) в виде паров или адсорбцией на твердом поглотителе. Осаждение кристаллов с последующим возвратом маточного раствора в процесс часто применяется в технологии минеральных солей, например в производстве хлорида калия, сульфата аммония и в других производствах. Десорбция паров растворенного вещества используется для повышения емкости (Ас) растворителя при очистке газов.

Увеличение константы скорости процесса может достигаться повышением температуры взаимодействующей системы; применением катализаторов; усилением перемешивания реагирующих масс (турбулизацией системы).

1. Повышение температуры приводит к сильному увеличению констант скоростей реакций и в меньшей степени к увеличению коэффициентов диффузии. В результате суммарная скорость процесса увеличивается при повышении температуры до некоторого предела, при котором большое значение приобретают скорости обратной или побочных реакций, точнее увеличиваются константы скорости. Влияние температуры реагирующих масс на константу скорости реакции для большинства процессов, идущих в кинетической области, определяется формулой Аррениуса.

Согласно правилу Вант-Гоффа, температурный коэффициент обычно равен 2-4, т.е. при повышении температуры на 10° скорость реакции увеличивается в 2-4 раза. Однако это правило приближенно применимо лишь в области средних температур (10-200°С) при энергиях активации порядка 60000-120000 Дж/моль. Температурный коэффициент у уменьшается с понижением энергии активации и повышением температуры, приближаясь к единице в области высоких температур.

Влияние температуры на скорость процессов в диффузионной области меньше, чем в кинетической.

Диффузия в жидкостях протекает еще медленнее, чем в газах, вследствие высокой вязкости жидкостей. Значения коэффициента диффузии в растворах в 104-105 раз меньше, чем в газах..

Наиболее медленна диффузия в твердой среде. При обычной температуре коэффициент диффузии для твердых веществ имеет порядок см2...........

/год - см2/век. Повышение температуры, увеличивая скорость и амплитуду колебания атомов в кристаллах, резко повышает скорость диффузии. Так, при 900-1000°С диффузия углерода в железо при термической обработке металлов происходит за несколько часов.

Вследствие большего температурного коэффициента скорости реакции, чем диффузии, некоторые химико-технологические процессы (например, газификация топлива, обжиг сульфидных руд) при повышении температуры переходят из кинетической области в диффузионную. Однако диффузия не влияет на равновесие химических процессов.

Как известно, скорость прямой реакции должна все время увеличиваться при повышении температуры. Однако в производственной практике имеется много причин, ограничивающих возможность интенсификации процесса повышением температуры. Для всех обратимых экзотермических процессов, протекающих с выделением теплоты, с повыше-нием температуры уменьшается константа равновесия, соответственно снижается равновесный выход продукта и при некотором повышении температуры кинетика процесса вступает в противоречие с термодинамикой его; несмотря на повышение скорости прямого процесса, выход ограничивается равновесием. При низких температурах действительный выход определяется скоростью прямого процесса и потому растет с повышением температуры; при высоких температурах скорость обратного процесса увеличивается сильнее, чем прямого процесса; выход, ограниченный равновесием, снижается с ростом температуры. Следовательно, беспредельное повышение температуры нецелесообразно.

В ряде процессов, особенно в технологии органических веществ, повышение температуры ограничивается возникновением побочных реакций с большим температурным коэффициентом, чем в основной реакции. При этом выход продукта может сильно снижаться еще до приближения к состоянию равновесия. Такой характер имеют кривые синтеза метанола, высших спиртов и многих других продуктов органического синтеза.

Сильное повышение температуры во многих производственных процессах оказывается вредным, так как приводит к удалению реагирующих веществ из зоны реакции, например за счет десорбции компонентов, из жидкой реакционной среды, или к уменьшению поверхности соприкосновения газов с твердыми веществами вследствие спекания в агломераты твердых зернистых материалов. Повышение температуры часто ограничивается термостойкостью конструктивных материалов, из которых изготовлены реакционные аппараты, а также затратами энергии на повышение температуры, особенно в эндотермических процессах. Таким образом, регулирование температуры необходимо для увеличения константы скорости к и повышения движущей силы процесса Дс. Оптимальные температуры процессов зависят от природы реагентов и концентрации их, степени превращения исходных веществ в продукты реакции, давления, по-верхности соприкосновения реагирующих фаз и интенсивности их перемешивания, наконец, для многих процессов от активности применяемых катализаторов.

2. Применение катализаторов сильно повышает константу скорости реакции, не вызывая изменения движущей силы процесса Ас.

Катализаторы ускоряют химические реакции вследствие замены одностадийного процесса, требующего большой энергии активации Е, двух- или более стадийным процессом, в каждой последовательной стадии которого требуется энергия активации, значительно меньшая, чем энергия активации одностадийного процесса.

Энергию активации каталитических реакций можно вычислить из уравнения Аррениуса. Однако для твердых катализаторов получается не истинная, а кажущаяся энергия активации, которая больше истинной на величину теплоты адсорбции реагирующих веществ (вещества А) на катализаторе. Катализаторы не ускоряют диффузионные процессы, поэтому их применение целесообразно только для процессов, идущих в кинетической области. Применение катализаторов во многих производствах ог-раничивается их нестойкостью в условиях необходимого техноло-гического режима, т.е. потерей активности при повышенных или пониженных температурах, а также вследствие действия приме-сей, содержащихся в исходных материалах.

3. Перемешивание увеличивает коэффициент массопередачи или константу скорости процесса вследствие замены молекулярной диффузии конвективной, т.е. снижения диффузионных сопротивлений, препятствующих взаимодействию компонентов. Следовательно, усиление перемешивания взаимодействующих веществ. Целесообразно применять для процессов, идущих в диффузионной области до тех пор, пока общая константа скорости процесса k не перестанет зависеть от коэффициентов переноса D, т. е. вплоть до перехода процесса из диффузнойной области в кинетическую.

Дальнейшее усиление перемешивания в проточных аппаратах снижает движущую силу процесса и скорость реакции.

Из трех рассмотренных направлений увеличения константы скорости процесса используют, прежде всего, то, которое ускоряет наиболее медленную стадию процесса.

Увеличение поверхности соприкосновения фаз в гетерогенных системах производится различно в зависимости от вида системы: Г-Ж, Г-Т, Ж-Т, Ж-Ж (несмешивающиеся) и Т-Т, а также от необходимого режима процесса, т.е. применяемых давлений, температур, концентраций реагентов, катализаторов и т.п. Способ создания поверхности соприкосновения опре-деляет конструкцию аппарата для данной агрегатной системы.

Во всех случаях стремятся увеличить поверхность более тяжелой (плотной) фазы - твердой в системах Г-Т, Ж-Т и жидкой в системе Г-Ж; более же легкая фаза во всех типах аппаратов омывает поверхность тяжелой фазы.




Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 3098; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.017 сек.