Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Адиабатное течение газа

 

В технической газодинамике весьма важным случаем является течение газа по трубопроводу переменного сечения без притока или отдачи тепла и без производства работы. В этом случае, когда и (для упрощения положим, что и), основное уравнение газодинамики преобразуется в уравнение, которое является термодинамическим обобщением уравнения Бернулли:

  (9.10)

Здесь в отличие от уравнения Бернулли (9.7) вместо давления, деленного на плотность фигурирует теплосодержание; но, и очевидно, что для потока несжимаемой жидкости, когда нет необходимости учитывать изменение термодинамического состояния (т.е. когда внутренняя энергия жидкости предполагается постоянной и плотность неизменна), уравнение (9.10) переходит в уравнение Бернулли.

Из термодинамического обобщения уравнения Бернулли мы видим, что сумма теплосодержания и кинетической энергии газового потока при стационарном адиабатном течении без производства работы одинакова для всех сечений потока.

Течение, при котором скорость газа убывает, а плотность, давление и температура растут, называется течением со сжатием. Следует подчеркнуть, что здесь слово «сжатие» относится к термодинамическому состоянию потока, к отдельному объему газа, а отнюдь не к площади поперечного сечения трубопровода; при не слишком больших начальных скоростях газа в расширяющемся трубопроводе газ затормаживается, кинетическая энергия его уменьшается, а температура и плотность растут, т.е. имеет место течение со сжатием.

Течение, при котором кинетическая энергия потока растет, а плотность, давление и температура уменьшаются, называется течением с расширением. Рассмотрим оба случая течения в отдельности.

Течение с расширением имеет место, например, при истечении газа из камеры реактивного двигателя.

При адиабатном течении с расширением прирост кинетической энергии вызывается убылью теплосодержания и падением температуры:

  (9.11)

Падение температуры сопровождается уменьшением давления и плотности газа; когда расширение газа происходит равновесно, можно воспользоваться уравнением Пуассона

   

Следовательно,

  (9.12)

Здесь согласно уравнению Майера.

Пусть из баллона, где давление газа и температура, газ адиабатно вытекает через отверстие площадью в резервуар, в котором давление («противодавление»). При небольших перепадах давления (когда превышает не более чем в 1,8-1,9 раза), давление газа в вытекающей струе равно противодавлению. В этом случае согласно уравнению (9.12) скорость истечения определяется формулой:

  (9.13)

Здесь - статическое давление в вытекающей струе.

Весовой расход газа (в) равен произведению площади поперечного сечения отверстия (в) на скорость истечения (в) и на плотность вытекающего газа (в):

   

По мере уменьшения противодавления давление в вытекающей струе будет уменьшаться, а вместе с ним будет адиабатно уменьшаться по закону Пуассона и плотность вытекающего газа; скорость истечения будет расти.

Весовой расход газа через данное отверстие определяется двумя величинами: плотностью и скоростью истечения газа. Первая из этих величин,, с уменьшением убывает, а вторая,, наоборот, растет. Расход газа с уменьшением противодавления первое время увеличивается за счет быстрого увеличения скорости; затем расход замедляется за счет заметного уменьшения плотности и, наконец, становится постоянным: каким бы малым ни было противодавление, расход газа будет иметь одну и ту же величину.

Таким образом, оказывается, что когда противодавление составляет примерно половину давления в баллоне, то дальнейшее уменьшение противодавления является бесполезным для повышения скорости истечения и расхода газа. В струе устанавливается некоторое критическое значение скорости истечения, давления, температуры и плотности газа, которые уже более не изменяются, как бы в дальнейшем не уменьшали противодавление. Если до этого момента давление на выходе в струе оставалось равным противодавлению, то с указанного момента при истечении газа с критической скоростью у выходного отверстия устанавливается скачок давления, так как уменьшение уже не будет больше вызывать уменьшения.

Скорость газа, вытекающего из отверстия или из сужающегося насадка, не может быть больше критической скорости:

  (9.14)

Понижение температуры в струе при критическом истечении согласно уравнению Пуассона и формуле (9.13) равно:

   

Таким образом,, и, стало быть, формулу (9.14) можно переписать так:

   

Критическая скорость равна скорости, с которой распространяется звук при имеющейся в струе температуре. Ни при каком сколь угодно большом давлении в баллоне газ не может вытекать из отверстия со скоростью, большей, чем скорость звука.

Максимальный расход газа при критическом течении определяется формулой

   

Чтобы понять физические причины, обуславливающие существование критических параметров в струе вытекающего газа, представим себе, что противодавление вдруг резко снижено (хотя бы до нуля). Если скорость истечения к этому времени уже достигла скорости звука, то это никак не отразится на термодинамическом состоянии газа.

Регулируя режим течения газа определенным выбором профиля трубопровода, можно использовать избыточное давление, возникающее в струе при критическом истечении, и реализовать скорости течения, превышающие скорость звука. Физически эта задача заключается в том, чтобы изыскать условия, при которых неупорядоченное молекулярно-тепловое движение в газе, который уже движется со скоростью звука, частично превратить в упорядоченное движение и, таким образом сообщить массе газа скорость, превышающую критическую скорость истечения. С этой целью Лавалем, Стентоном и Франклем были разработаны сверхзвуковые сопла (рис. 9.8).

В сопле Лаваля скорость газа непрерывно растет: в сужающейся части сопла скорость возрастает от нуля до звуковой величины, в расширяющейся части сопла скорость возрастает от звуковой до сверхзвуковой величины. Давление газа по мере приближения к выходу из сопла падает; при уменьшении давления (за критическую величину) скорость истечения растет медленнее, чем уменьшается плотность; поэтому увеличение скорости должно обеспечиваться расширением сопла: выходное сечение больше критического.

 
 
 
Рис. 9.8

При больших относительных перепадах давления понижение температуры газа, текущего по расширяющемуся соплу, бывает очень значительным. Так, например, когда,, то температура вытекающей струи воздуха понижается почти на.

Течение со сжатием характеризуется уменьшением скорости потока и возрастанием давления, плотности и температуры газа. Согласно уравнению (9.10) убыль кинетической энергии вызывает прирост теплосодержания и повышение температуры:

  (9.15)

Отсюда относительное повышение теплосодержания при адиабатном течении со сжатием до полного затормаживания потока получается равным

   

Здесь величина пропорциональна квадрату скорости звука: известно, что скорость звука в газах; с другой стороны,, следовательно,.

Итак, относительное повышение теплосодержания зависит только от отношения начальной скорости газа к скорости звука в потоке до торможения газа.

Отношение скорости течения к скорости звука (от которого зависит изменение параметров газа при сжатии) называют числом Маха, или числом Берстоу, и обозначают символом М:

М=  

Вводя это обозначение в предыдущее уравнение, получаем

М (9.16)

Следовательно, если (М), то уменьшение сечения сопла приведет к увеличению скорости потока (дозвуковой поток увеличивается с уменьшением сечения сопла). Если же (М), тогда расширение сопла приведет к увеличению скорости потока – сверхзвуковой поток будет увеличиваться с увеличением сечения сопла.

 

<== предыдущая лекция | следующая лекция ==>
Основное уравнение газовой динамики | Вязкость и течение жидкости при трении
Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 1127; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.