КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Задачи целочисленного программирования
Значительная часть задач производственного менеджмента, относящихся к задачам линейного программирования, требует целочисленного решения. К ним относятся задачи, у которых переменные величины означают количество единиц неделимой продукции. Целочисленное программирование ориентировано на решение задач, в которых все или некоторые переменные должны принимать только целые значения. Задача называется полностью целочисленной, если условие целочисленности наложено на все ее переменные; когда это условие относится лишь к некоторым переменным, задача называется частично целочисленной. Математическая модель линейной целочисленной задачи может быть записана следующим образом: F() = (1) , bi 0, i = 1,..., m, (2) xj 0, j = 1,..., n, xj – целые. (3) Существует эвристический подход к решению задач целочисленного программирования (ЗЦП), основанный на решении ЗЦП как задачи ЛП. Использование процедур округления нецелочисленного оптимального решения задачи ЛП дает возможность получать приближенное оптимальное целочисленное решение. Например, если в оптимальном решении двумерной задачи ЛП значения переменных х1 и х2 оказались равными 3,5 и 4,4 соответственно, то в качестве кандидатов на роль приближенного целочисленного оптимального решения необходимо рассмотреть точки (3;4), (4;4), (4;5), (3;5) полученные в результате округления. Заметим однако, что истинное оптимальное целочисленное решение может не совпадать ни с одним из четырех, указанных выше. ПРИМЕР F() = x1 – 3×x2 + 3×х3 при ограничениях 2×x1 + x2 - х3 £ 4 4×x1 - 3×x2 £ 2 -3×x1 + 2×x2 + х3 £ 3 x1, х2, х3 ³ 0, целые. Игнорируя условия целочисленности получим . Никакое округление компонент этого плана не дает допустимого решения, так как искомое целочисленное решение . Таким образом, для решения целочисленных задач необходимы специальные методы. Точные методы решения задач целочисленного программирования можно классифицировать как методы отсечений и комбинаторные методы. Название “методы отсечений” связано с тем обстоятельством, что вводимые дополнительные ограничения отсекают некоторые области многогранника допустимых решений, в которых отсутствуют точки с целочисленными координатами. Метод отсекающих плоскостей, разработанный Р. Гомори, используется при решении полностью целочисленных задач. В основе комбинаторных методов лежит идея перебора всех допустимых целочисленных решений. Разумеется, на первый план здесь выдвигается проблема разработки процедур, позволяющих непосредственно рассматривать лишь относительно небольшую часть указанных решений, а остальные допустимые решения учитывать некоторым косвенным образом. Наиболее известным комбинаторным методом является метод ветвей и границ.
Дата добавления: 2013-12-14; Просмотров: 305; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |