КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Плотность и удельный вес
Важнейшими характеристиками механических свойств жидкости являются ее плотность и удельный вес. Они определяют «весомость» жидкости. Под плотностью ρ (кг/м3) понимают массу жидкости т, заключенную в единице ее объема V, т.е. ρ = m/V. Вместо плотности в формулах может быть использован также удельный вес γ (Н/м3), т.е. вес G, приходящийся на единицу объема V: γ =G/V. Плотность и удельный вес жидкости связаны между собой. Эта связь легко устанавливается, если учесть, что G = mg: γ =G/V = mg/V = ρ g. Изменения плотности и удельного веса жидкости при изменении температуры и давления незначительны, и в большинстве случаев их не учитывают. Плотности наиболее употребляемых жидкостей и газов (кг/м3): бензин — 710...780; керосин — 790...860; вода — 1000; ртуть — 13600; масло гидросистем (АМГ-10) — 850; масло веретенное — 890...900; масло индустриальное — 880...920; масло турбинное — 900; метан — 0,7; воздух — 1,3; углекислый газ — 2,0; пропан — 2,0. 1.3.2 Вязкость (1.5) где dυ/dy — градиент скорости, характеризующий интенсивность нарастания скорости υ при удалении от стенки (по оси у). Зависимость (1.5) называют законом трения Ньютона. Течения большинства жидкостей, используемых в гидравлических системах, подчиняются закону трения Ньютона, и их называют ньютоновскими жидкостями. Однако следует иметь в виду, что существуют жидкости, в которых закон (1.5) в той или иной степени нарушается. Такие жидкости называют неньютоновскими. Величина μ, входящая в (1.5), получила название динамической вязкости жидкости. Она измеряется в Паּс либо в пуазах 1 Пз = 0.1 Па ּс. Однако на практике более широкое применение нашла кинематическая вязкость: . (1.6) Единицей измерения последней в системе СИ является м2/с или более мелкая единица см2/с, которую принято называть стоксом, 1 Ст = 1 см2/с. Для измерения вязкости также используются сантистоксы: 1 сСт = 0,01 Ст. В Вязкость жидкостей зависит также от давления, но это изменение незначительно, и в большинстве случаев его не учитывают.
Для учета сжимаемости газов при различных условиях могут быть использованы уравнения состояния газа или зависимости для политропных процессов [4]. Сжимаемость капельных жидкостей характеризуется коэффициентом объемного сжатия βр (Па-1): , где dV— изменение объема под действием давления; dр - изменение давления; V — объем жидкости. Знак минус в формуле обусловлен тем, что при увеличении давления объем жидкости уменьшается, т.е. положительное приращение давления вызывает отрицательное приращение объема. При конечных приращениях давления и известном начальном объеме V0 можно определить конечный объем жидкости , (1.8) а также ее плотность (1.9) Величина, обратная коэффициенту объемного сжатия βр, называется объемным модулем упругости жидкости (или модулем упругости) К = 1/ βр (Па). Эта величина входит в обобщенный закон Гука, связывающий изменение давления с изменением объема (1.10) Модуль упругости капельных жидкостей изменяется при изменении температуры и давления. Однако в большинстве случаев K считают постоянной величиной, принимая за нее среднее значение в данном диапазоне температур или давлений. Модули упругости некоторых жидкостей (МПа): бензин — 1300; керосин — 1280; вода — 2000; ртуть — 32400; масло гидросистем (АМГ-10) — 1300; масло индустриальное 20 - 1360; масло индустриальное 50 - 1470; масло турбинное — 1700. (1.11) где dT — изменение температуры; dV— изменение объема под действием температуры; V — объем жидкости. При конечных приращениях температуры , (1.12) . (1.13) Как видно из формул (1.12), (1.13) с увеличением температуры объем жидкости возрастает, а плотность уменьшается. Коэффициент температурного расширения жидкостей зависит от давления и температуры, так для воды при t = 0 0C и p = 0,1 МПа βt = 14·10 –6 1/град, а при t = 100 0C и p = 10 МПа βt = 700·10 –6 1/град, то есть изменяется в 50 раз. Однако на практике обычно принимают среднее значение в данном диапазоне температур и давления. Например, для минеральных масел βt ≈ 800·10 –6 1/град. Газы весьма значительно изменяют свой объем при изменении температуры. Для учета этого изменения используют уравнения состояния газов или формулы политропных процессов [4]. В гидравлике наибольшее значение имеет условие, при котором начинается интенсивное парообразование по всему объему — кипение жидкости. Для начала процесса кипения должны быть созданы определенные условия (температура и давление). Например, дистиллированная вода закипает при нормальном атмосферном давлении и температуре 100 °С. Однако это является частным случаем кипения воды. Та же вода может закипеть при другой температуре, если она будет находиться под воздействием другого давления, т. е. для каждого значения температуры жидкости, используемой в гидросистеме, существует свое давление, при котором она закипает. Такое давление называют давлением насыщенных паров рн.п... Величина рнп всегда приводится как абсолютное давление и зависит от температуры. Для примера на рисунке 1.5 приведена зависимость давления насыщенных паров воды от температуры. На графике выделена точка ^ А, соответствующая температуре 100 °С и нормальному атмосферному давлению ра. Если на свободной поверхности воды создать более высокое давление р1, то она закипит при более высокой температуре Т1 (точка В на рисунке 1.5). И наоборот, при малом давлении р2 вода закипает при более низкой температуре Т2 (точка С на рисунке 1.5). Относительный объем газа, растворенного в жидкости до ее полного насыщения, можно считать по закону Генри прямо пропорциональным давлению, то есть Vг /Vж = k p/p0, где Vг – объем растворенного газа, приведенный к нормальным условиям (p0, Т0 ); Vж – объем жидкости; k - коэффициент растворимости; р - давление жидкости. Коэффициент k имеет следующие значения при 20 0С: для воды – 0,016, керосина - 0,13 минеральных масел - 0,08, жидкости АМГ-10 – 0,1. При понижении давления выделяется растворенный в жидкости газ, причем интенсивнее, чем растворяется в ней. Это явление может отрицательно сказывается на работе гидросистем. 2 ГИДРОСТАТИКА Второе свойство гидростатического давления состоит в том, что в любой точке внутри покоящейся жидкости гидростатическое давление не зависит от ориентировки площадки, по которой оно действует, то есть одинаково во всех направлениях. Исходя из этих свойств гидростатического давления, можно получить основное уравнение гидростатики. Пусть жидкость находится сосуде, а на ее свободную поверхность действует давление ра . (рисунок2.1). Определим давление р в произвольно выбранной точке, которая находится на глубине h. Для определения искомого давления р вокруг произвольно выбранной точки возьмем бесконечно малую горизонтальную площадку ΔS и построим на ней цилиндр до открытой поверхности жидкости. На выделенный объем жидкости сверху вниз действуют сила, равная произведению давления р0 на площадь ΔS, и вес выделенного объема жидкости G. В выбранной точке искомое давление р действует по всем направлениям одинаково (второе свойство гидростатического давления). Но на выделенный объем создаваемая этим давлением сила действует по нормали к поверхности и направлена внутрь объема (первое свойство гидростатического давления), т.е. сила направлена вверх и равна произведению р на площадь ΔS. Тогда условием равновесия выделенного объема жидкости в вертикальном направлении будет равенство p ∙ ΔS - G - p0 ∙ΔS = 0. Вес G выделенного цилиндра жидкости можно определить, подсчитав его объем V: G = V∙ p ∙g = ΔS∙ h ∙ ρ ∙ g. Подставив математическое выражение для G в уравнение равновесия и решив его относительно искомого давления р, окончательно получим p = p0 + ρ g h. (2.1) Полученное уравнение называют основным уравнением гидростатики. Оно позволяет подсчитать давление в любой точке внутри покоящейся жидкости, как сумму давления p0 на внешней поверхности жидкостии давления, обусловленного весом вышележащих слоев жидкости - ρ g h. Величина р0 является одинаковой для всех точек объема жидкости, поэтому учитывая свойства гидростатического давления, можно сказать, что давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости и по всем направлениям одинаково. Это положение известно под названием закона Паскаля. Давление жидкости, как видно из формулы (2.1), возрастает с увеличением глубины по линейному закону и на данной глубине есть величина постоянная. Поверхность, давление во всех точках которой одинаково, называется поверхностью уровня. В случае, когда на жидкость действует только сила тяжести, поверхности уровня представляют собой горизонтальные плоскости, при этом свободная поверхность является одной из поверхностей уровня. Возьмем на произвольной высоте горизонтальную плоскость сравнения. Обозначив через z расстояние от этой плоскости до рассматриваемой точки, через z0 - расстояние до свободной поверхности и заменив в уравнении (2.1) h на z – z0, получим основное уравнение гидростатики в другой форме: . (2.2) Так как рассматриваемая точка выбрана произвольно, можно утверждать, что для любой точки неподвижного объема жидкости . Координата z называется геометрической высотой, величина р / ρg – пьезометрической высотой, а их сумма - гидростатическим напором. Таким образом, гидростатический напор есть величина постоянная для всего объема неподвижной жидкости. Основное уравнение гидростатики широко применяется для решения практических задач. Однако при его использовании в практических расчетах следует обращать особое внимание на высоту h, так как она может принимать как положительные, так и отрицательные значения. Действительно, если точка, в которой определяем давление, располагается ниже точки с исходным давлением, то в математической записи основного закона гидростатики ставится знак «+», как в формуле (2.1). А в том случае, когда точка, в которой определяем давление, располагается выше точки с исходным давлением, в уравнении знак «+» изменяется на «-», то есть ро = р – ρ g h. При выборе знака в основном законе гидростатики всегда следует помнить, что чем ниже (глубже) располагается точка в данной жидкости, тем больше давление в этой точке. В заключение следует добавить, что основное уравнение гидростатики широко используется при измерении давлений. Простейшим прибором для измерения избыточного давления является пьезометр, который представляет собой вертикально установленную прозрачную трубку, верхний конец которой открыт в атмосферу, а нижний присоединен к емкости, в которой измеряется давление (рисунок 2.2, а). Применяя формулу (2.1) к жидкости, заключенной в пьезометре, получим рабс = рa + ρ ghp , где рабс - абсолютное давление в жидкости на уровне присоединения пьезометра, рa - атмосферное давление. Отсюда высота подъема жидкости в пьезометре (пьезометрическая высота) . (2.3) Таким образом, пьезометрическая высота представляет собой высоту столба жидкости, соответствующую избыточному давлению в данной точке. Измерения по пьезометру проводят в единицах длины, поэтому иногда давления выражают в единицах высоты столба определенной жидкости. Например, атмосферное давление, равное 760 мм рт. ст., соответствует высоте ртутного столба 760 мм в пьезометре. Подставив это значение в уравнение (2.3) при ρрт = 13600 кг/м3, получим атмосферное давление, равное 1,013 • 105 Па. Эта величина называетсяфизической атмосферой. Она отличается от технической атмосферы, которая соответствует 736 мм рт. ст. Это число можно получить, если подставить в формулу (2.3) ризб = 1 ат и вычислить высоту hp. С помощью стеклянной трубки можно измерить и давление вакуума, при этом жидкость в трубке опустится ниже уровня измерения (см. рисунок 2.2,б). В этом случае рабс = рa - ρ ghp , откуда .(2.4) Формула (2.4) позволяет определить максимальную высоту всасывания жидкости. Полагая рабс = 0 и не учитывая давления насыщенных паров, получаем . При нормальном атмосферном давлении (0,1033 МПа) высота Нmax для воды равна 10.33 м, для бензина – 13,8 м, для ртути – 0,760 м и так далее. С а) U – образный манометр; б) чашечный манометр; в) дифференциальный манометр; г) двух-жидкостный микроманометр; д) двух-жидкостный чашечный манометр. Аналогичные по принципу работы приборы с использованием ртути позволяют в 13,6 раза уменьшить пьезометрические высоты (ртуть в 13,6 раза тяжелее воды). Но ртуть ядовита, и такие приборы в машиностроении практически перестали применяться. Широкое распространение в технике для измерения давлений получили пружинные манометры. Основным элементом такого прибора (рисунок 2.4) является пружинящая тонкостенная трубка 1 (обычно латунная). Один из концов трубки запаян и подвижен, а второй закреплен, и к нему подводится измеряемое давление. Подвижный конец трубки 1 кинематически связан со стрелкой 3. При изменении давления он изменяет свое положение и перемещает стрелку 3, которая указывает на соответствующее число на шкале 2. Пружинные приборы для измерения вакуума не имеют ни принципиальных, ни конструктивных отличий от пружинных манометров. Устройства для измерения вакуума получили название вакуумметров. Выпускаются также приборы, позволяющие измерять как избыточные давления, так и вакуум. Их принято называть мановакуумметрами. В метеорологии измерение абсолютных значений атмосферных давлений проводят с помощью барометров. Для машиностроительных систем измерение абсолютных давлений практического значения не имеет. При определении силы, действующей со стороны жидкости на плоскую стенку, рассмотрим общий случай, когда стенка наклонена к горизонту под углом α, а на свободную поверхность жидкости действует давление р0 (рисунок 2.5). Вычислим силу давления F, действующую на некоторый участок рассматриваемой стенки площадью S. Ось Ох направим по линии пересечения плоскости стенки со свободной поверхностью жидкости, а ось Оу — перпендикулярно к этой линии в плоскости стенки. Выразим сначала элементарную силу давления, приложенную к бесконечно малой площадке dS: dF = p dS = (pо + ρ gh) dS = pо dS + ρ g h d S, где ро — давление на свободной поверхности; h — глубина расположения площадки dS. Для определения полной силы F проинтегрируем полученное выражение по всей площади S: где у — координата площадки dS. Последний интеграл представляет собой статический момент площади S относительно оси Ох и равсн произведению этой площади на координату ее центра тяжести (точка С), то есть , Следовательно , здесь hс — глубина расположения центра тяжести площади S.
Дата добавления: 2013-12-14; Просмотров: 10304; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |