КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Формулы движений
Пусть имеется некоторые движение f плоскости. Выберем на плоскости прямоугольную декартову систему координат и обозначим через (х;у) координаты произвольной точки М, а через (x /;у/) – координаты ее образа М/ при движении f в этой же системе координат: f. Найдем аналитическое выражение движения f в системе координат, то есть формулы, связывающие координаты точки и ее образа при движении. Теорема 1: движение 1-го рода задается формулами: (1) А движение 2-го рода задается формулами: (2)
Доказательство. 1)
По определению движения имеем: ОМ=О/М/ - диагонали прямоугольников с вершинами М и М/ и сторонами на соответствующих … координат равны. Тогда равны и сами эти прямоугольники. Поэтому точка М/ имеет в системе координат те же самые координаты х, у, что и точка М в системе координат. Применим к точке М/ теорему 2 из §11, учитывая, что движение первого рода типа системы координат: > (3) Где () – «новые» ординаты точки М/ в «старой» системе координат, но теперь они равны и соответственно. В правой части равенств (3) стоят координаты точки М/ в «новой» системе координат, но теперь они равны х и у соответственно. Заменим координаты х, у, координатами,, и таким образом получим формулы (1). 2) Если f – движение 2-го рода, то формулы (2)доказываются аналогично, если учесть, что движение 2-го рода изменяет ориентацию плоскости и тип системы координат на противоположные. Замечания: 1) В формулах (1) и (2) - () – координаты точки О/ - образа «старого» начала координат О – в «старой» системе координат:. ; 2) Формулы (1) и (2) можно объединить следующим образом: где ε= 1. (1)
3) Имеет место теорема, обратная доказанной. Теорема 2: всякое преобразование плоскости, задаваемое в прямоугольной декартовой системе координат формулами (1), является движением 1-го рода, а формулами (2) – движением 2-го рода; 4) Формулы движений имеют внешнее сходство с формулами перехода от одной системы координат к другой (см. §11). Однако, формулы движений связывают координаты двух точек – М и ее образа М/ - в одной и той же системе координат, а формулы перехода связывают одной и той же точки в разных системах координат – «старой» и «новой». Частные случаи движений: I. Движения 1-го рода: 1)
2) вокруг начала координат на угол. 3) симметрии с центром О (0;0). II. Движения 2-го рода: 1) с осью О х. 2) с осью О у.
Дата добавления: 2013-12-14; Просмотров: 759; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |