Нехай – оригінал, функція неперервна і . Якщо існує похідна , яка є теж оригіналом, то
.
Зокрема, якщо , то диференціювання оригіналу зводиться до множення зображення на . Якщо оригінал має похідні до -го порядку, які є оригіналами і неперервна, то
Зокрема, коли , то
.
Зауважимо, що ця властивість широко використовується при розв’язуванні лінійних диференціальних рівнянь із сталими коефіцієнтами та їх систем.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление