КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Анализ сезонности во временных рядах
Существует несколько основных методов выделения сезонных и циклических колебаний. К ним относятся: 1.Рассчет сезонной компоненты и построение аддитивной или мультипликативной модели временного ряда. Рассчитывается либо сезонная средняя либо индекс сезонности. аддитивная модель коммуникативная модель
2.Анализ сезонности с помощью автокорреляционной функции.
3.Моделирование с помощью рядов Фурье. При этом подходе строится зависимость (т.е.регрессионная модель), в которой в качестве характеристик сезонности включается пара sin и cos, характеризующая свои определенные периоды. В данном случае сезонная составляющая представляет собой: - период сезонности. Например. Если Тк=30 дням, то выявлена ежемесячная сезонность - случайная ошибка В этой модели неизвестными являются параметры, которые находятся с помощью МНК, но для того, чтобы оценки были близки к истинным значениям, необходимо выполнение тех же условий, что и для модели линейной регрессии, а именно ~ N – нормальное распределены. Пример. По выборке о динамике урожайности зерновых культур, в одном из частных хозяйств была построена следующая трендовая модель остатки оказались не близки к нормальным и их средняя была далеко от 0. Поскольку график остатков явно содержал сезонные составляющие, то для остатков была построена модель сезонных составляющих с помощью ряда Фурье (Microsoft Excel) После построения модели оказалось близко к нормальному распределению, а их МО стало близко к 0. Замечание. Так как большое количество параметров усложняет модель, делает ее сложно применимой и требует большого количества наблюдений, то при анализе сезонности необходимо выбрать основные значимые составляющие, т.е.выбрать только основные периоды сезонности (не больше 4-х периодов). Если вы выбрали 4 периода, то в модель включаются 4 пары sin и cos по одной паре на каждый период. Пример. На основании данных «Сибнефть» был получен ряд котировок. 03.01.02 – 09.07.03
Но проводя анализ остатков было выяснено, что они не близки к нормальным, а их графический (визуальный) анализ позволил получить наличие сезонности. Дальнейший анализ выявил следующую сезонность. Оценки коэффициентов получены в Excel путем построения многомерной регрессии на соответствующие пары sin и cos. из всех периодов сезонности были выбраны 2 самых значимых (162 и 109) Т.к.оценивание производится с помощью Excel – Пакет анализ ® Регрессия, то по таблице итогов было видно, что все коэффициенты значимы, R2 – высокий, а сами выбранные периоды имели экономический смысл: 1-ый период: =109 дней» 4 месяца» 1/3 года 2-ой период: =162 дня» полгода. Замечание 1. Если после построения регрессии на sin и cos из пары синуса и косинуса значима только одна составляющая, то в модель все равно включают пару. Замечание 2. Основная сложность этого метода состоит в определении значимых периодов. Существует множество различных критериев для определения значимых периодов. Один из самых простых критериев состоит в следующем: выписываются все логически значимые периоды, исходя из сущности… Т.е.строится множество пар синусов и косинусов (порядка 10-15), а дальше, строя на них регрессию, исходя из значимости коэффициентов, максимизации R2 и R2 нормированных, устраняют лишние (незначимые) пары синусов и косинусов.
Использование сезонных фиктивных компонент при моделировании сезонных колебаний При этом подходе строится регрессионная модель, в которую помимо факторов времени включают сезонные фиктивные переменные. Каждому из сезонов соответствует определенное сочетание фиктивных переменных, а 1 из сезонов за базовый. Например. Если имеются поквартальные данные, то вводятся 3 новые фиктивные переменные. 1-ый квартал считается за базовый.
a0,a1,a2,b1,b2,b3 – коэффициенты, полученные МНК a0+b1 – коэффициент, характеризующий изменение 2-го квартала по сравнению с 1-м. a0+b2 - коэффициент, характеризующий изменение 3-го квартала по сравнению с 1-м. a0+b3 - коэффициент, характеризующий изменение 3-го квартала по сравнению с 1-м. Если коэффициент перед сезонной фиктивной переменной больше 0, то по сравнению с 1-ым кварталом был прирост. Если же bi <0, то был спад по сравнению с 1-ым кварталом. b1,b2,b3 могут иметь разные знаки. Этот метод удобен для выявления явных простых сезонностей (квартальная, годовая зависимость), но с помощью него не удастся выявить сложную зависимость.
Дата добавления: 2013-12-13; Просмотров: 1443; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |