КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Назначение и состав методического обеспечения САПР
Содержание Контрольные вопросы Разработка технического обеспечения САПР Режимы работы технических средств САПР Высокопроизводительные технические средства САПР и их комплексирование Содержание
Цель лекции заключается в создании полной характеристики технического обеспечения САПР. Рабочие станции (PC) и персональные компьютеры (ПК) имеют традиционную архитектуру, ориентированную на последовательные вычисления, т. е. одним потоком команд они обрабатывают один поток данных. Такая организация вычислений была предложена фон-Нейманом и названа его именем. Усложнение решаемых задач и вычислительных алгоритмов САПР привело к внедрению в эту область более высокопроизводительных ЭВМ, организация вычислений в которых основана на множественности потоков команд, обрабатывающих множество потоков данных. Архитектура этих ЭВМ называется параллельной - "не фон-неймановской". По множественности/одиночности потоков команд и данных ЭВМ можно разделить на четыре класса, но на практике используются ЭВМ трех классов. На рис. 9.1 показаны упрощенные структурные схемы трех классов ЭВМ, включающие в себя следующие блоки: ОЗУ команд (ОЗУк), ОЗУ данных (ОЗУд), устройство управления (УУ), центральный процессор (ЦП), а также потоки команд (К) и потоки данных (Д). ЭВМ класса ОКОД - это традиционные "фон-неймановские" машины с одиночным потоком команд и одиночным потоком данных. К ним относятся PC и ПК. ОКМД ЭВМ - это параллельные компьютеры с одиночным потоком команд и множественными потоками данных. МКМД ЭВМ - это многопроцессорные ЭВМ с множественными потоками команд и множественными потоками данных.
На рис. 9.1 а, б, в показаны также соответствующие трем классам ЭВМ алгоритмы организации вычислений. Стрелками в них обозначены потоки команд и данных, кружками - выполняемые операторы. В случае ОКОД ЭВМ используется обычный последовательный алгоритм вычислений. Для организации вычислений в ЭВМ класса ОКМД применяется последовательно-групповой алгоритм. В этом случае группе выполняемых операторов соответствуют операции над векторными и матричными данными. ОКМД ЭВМ реализуются в виде векторных и матричных ЭВМ. Поскольку производительность таких машин велика, их называют суперЭВМ. Матричная суперЭВМ представляет собой матрицу одинаковых процессорных элементов с собственными локальными ОЗУ, причем каждый из процессоров матрицы выполняет в каждый момент времени одну и ту же команду над разными элементами векторных (матричных) данных. Недостаток матричных ЭВМ - ограниченное количество процессорных элементов в матрице ограничивает производительность ЭВМ: чем длиннее векторы обрабатываемых данных, тем ниже выигрыш в производительности такой матричной суперЭВМ перед обычной ОКОД ЭВМ, называемой скалярной машиной. От этого недостатка свободны векторные суперЭВМ класса ОКМД. В отличие от матричной, векторная суперЭВМ имеет один процессор, но его аппаратура разбита на отдельные секции. При этом каждая секция обрабатывает элемент векторных данных за один и тот же такт времени своей логической подфункцией; на такие подфункции разбивается общая логическая функция, описывающая работу векторного процессора. Элементы векторов передаются от секции к секции с каждым новым тактом времени, формируя таким образом непрерывный конвейер обработки векторов. Секции конвейера называют его ступенями. По сравнению со скалярными ЭВМ, векторные конвейерные суперЭВМ оказываются тем более производительными, чем длиннее обрабатываемые векторы. Существенный недостаток векторных суперЭВМ - резкое снижение производительности при нарушении непрерывного потока данных, поступающих на вход конвейера. Поскольку алгоритм организации вычислений для ОКМД ЭВМ имеет специальный вид - последовательно-групповой, ЭВМ этого класса называют специализированными, так как они достигают своей пиковой производительности лишь на определенного класса задачах. В области САПР такие суперЭВМ успешно применяются для формирования реалистичных трехмерных графических изображений и решения ряда задач конструкторского проектирования сложных изделий там, где требуется обработка векторов и матриц. СуперЭВМ класса МКМД называют суперскалярными высокопараллельными многопроцессорными системами.Поскольку эти ЭВМ реализуют алгоритм вычислений со слабосвязанными множественными потоками команд и данных общего вида, они являются универсальными и обеспечивают выигрыш в производительности по сравнению со скалярными на большинстве задач, решаемых в области САПР. СуперЭВМ этого класса имеют множество процессоров, причем каждый из процессоров обрабатывает свои данные под управлением своего потока команд. Наиболее сложной проблемой для таких суперЭВМ является синхронизация обмена данными между задачами, запущенными на нескольких процессорах, и синхронизация ожидания одних запущенных задач (процессов) другими. Аппаратная связь между процессорами МКМД ЭВМ осуществляется тремя способами:
При наличии общей шины, соединяющей несколько МП, возникают конфликты между МП за право монопольного обмена по шине, что снижает эффективность такой ЭВМ. Этот недостаток привел к тому, что в настоящее время такой вид связи между МП почти не применяется. Применение общего многопортового ОЗУ предъявляет очень жесткие требования к устройству управления ОЗУ и к надежности самой памяти. Несмотря на этот недостаток, МКМД суперЭВМ с общей многопортовой памятью довольно широко используются в САПР. Наиболее перспективны многопроцессорные комплексы, в которых отдельные МП соединяются друг с другом с помощью коммутаторов перекрестных связей на основе быстро развивающихся КМОП-переключателей. Поскольку в параллельных ЭВМ трудно теоретически оценить производительность для решения различного класса задач, их производительность оценивается экспериментально с использованием текстовых пакетов и выражается в миллионах операциях с плавающей точкой в секунду - МФЛОПС. Параллельные суперЭВМ - это уникальные дорогие компьютеры, поэтому они являются ЭВМ коллективного пользования, работающими под управлением ОС с разделением времени. Они оснащены высокоскоростными адаптерами связи с региональными и глобальными вычислительными сетями и связаны с PC разработчиков РЭС с помощью САПР через сетевые каналы связи. PC-сервер - это PC с расширенным (по объему или номенклатуре) набором периферийных устройств. В качестве одной из задач в ОС такой станции запускается процесс-сервер-программа, обслуживающая пользователей других PС через сеть, предоставляя им периферию данной PC либо сетевое соединение через региональную сеть с суперЭВМ. В соответствии с этим различают:
Все эти PC, ПК и ЭВМ других классов объединяются (комплексиру-ются) для эффективного использования области САПР вычислительными сетями. Преимущества такого комплексирования заключаются в расширении функциональных возможностей САПР (каждый пользователь в том или ином подразделении имеет доступ к базам данных и программным средствам в других территориально удаленных подразделениях), в оптимизации распределения нагрузки между различными ЭВМ, в коллективном использовании дорогостоящей графической периферии, в повышении надежности функционирования технических средств САПР. Существует следующая классификация вычислительных сетей:
Состав технических средств базовых конфигураций САПР различных уровней в значительной степени определяется характером проектных задач. Существует взаимосвязь между классом решаемых задач и режимом использования ЭВМ. Рассмотрим задачи, решаемые в САПР, с целью выделения характеристик, определяющих выбор различных режимов работы ЭВМ. По характеру вычислительного процесса решаемые задачи можно разделить на две основные группы: задачи, решаемые без участия пользователя, и задачи, в процессе решения которых необходимо участие пользователя. По сложности вычисления задачи бывают:
По объему информации задачи, решаемые в САПР, можно разделить на монопольно использующие основную память ЭВМ и частично использующие основную память ЭВМ. Исходя из этой классификации решаемых задач САПР, можно выделить следующие необходимые режимы работы технических средств:
Режим работы технических средств можно классифицировать по удалению проектировщика от основного компонента технических средств:
Режим работы технических средств можно классифицировать по степени участия пользователя в процессе решения задач:
Пакетный режим обработки информации предпочтительнее для задач с большим временем счета и задач, не требующих вмешательства в процесс решения пользователя. Режим разделения времени удобнее для задач, время счета у которых соизмеримо со временем отклика пользователя на запрос ЭВМ, а также когда необходимо вмешательство пользователя в процесс решения. Разработка САПР представляет собой комплекс взаимосвязанных работ по созданию математического, программного, технического, информационного и других видов обеспечения систем, ориентированных на автоматизированное проектирование определенного класса объектов (САПР машиностроения, самолетостроения, БИС, ЭВМ и др.). В разработке и внедрении САПР принимают участие большие коллективы проектных и конструкторско-технологических организаций, усилия которых координируются группой системных исследователей. Принципы организации и стадии разработки САПР регламентированы руководящими и методическими материалами, а также государственными стандартами. Рассмотрим некоторые специфичные аспекты разработки технического обеспечения САПР (ТО САПР). К ТО САПР предъявляются требования возможности организации оперативного взаимодействия проектировщиков с ЭВМ, достаточной производительности вычислительных средств и необходимого объема оперативной памяти для решения задач автоматизированного проектирования за приемлемое время, возможности одновременной работы нескольких пользователей с ресурсами ТО, высокой надежности, приемлемой стоимости и т. п. Удовлетворение перечисленных требований возможно только путем организации ТО САПР в виде специализированной иерархической вычислительной системы (ВС) или вычислительной сети с развитым периферийным оборудованием, ориентированным на ввод, обработку и выдачу текстовой и графической информации. Задача разработки ТО САПР заключается в обосновании, расчете и выборе структуры многоуровневого комплекса технических средств (КТС) САПР, ориентированного на решение задач автоматизированного проектирования определенного класса объектов. Построение КТС может осуществляться путем комплексирования как стандартного оборудования (ЭВМ, каналы, дисплеи, устройства внешней памяти и т. д.), так и специально разработанного для КТС САПР (АРМ, графопостроители, кодировщики и т. д.). Создание многоуровневых КТС предполагает наличие на высшем уровне одной или нескольких ЭВМ большой производительности. Эти ЭВМ предназначены для решения сложных задач проектирования, требующих больших затрат машинного времени и памяти. На низших уровнях иерархии могут находиться ЭВМ средней производительности, а также мини- и микроЭВМ, входящие в состав автоматизированных рабочих мест (АРМ) (терминальные ЭВМ). Эти ЭВМ предназначены для решения сравнительно несложных задач проектирования, для управления работой комплекта периферийного оборудования и для организации обмена информацией между различными уровнями КТС. Для определения структуры КТС и параметров входящих в него компонентов могут служить ограничения: снизу - на число программ N,входящих в состав программного обеспечения САПР; сверху - на среднее время Т реакции КТС на поступившую задачу проектирования; снизу - на объем оперативной памяти для хранения программ проектирования; сверху - на время, необходимое процессору для решения усредненной задачи в однопрограммном режиме, а также по номенклатуре периферийного оборудования КТС САПР.
Изучение одного из важнейших видов обеспечения САПР - методического обеспечения и его составных частей: математического и лингвистического видов обеспечения. Методическое обеспечение САПР включает в себя: теорию процессов, происходящих в схемах и конструкциях РЭС; методы анализа и синтеза схем и конструкций радиоэлектронных устройств, систем и их составных частей, их математические модели; математические методы и алгоритмы численного решения систем уравнений, описывающих схемы и конструкции РЭС. Указанные компоненты методического обеспечения составляют ядро САПР. В методическое обеспечение САПР входят также алгоритмические специальные языки программирования, терминология, нормативы, стандарты и другие данные. Разработка методического обеспечения САПР РЭС требует специальных знаний в областях радиотехники, электроники, в частности, системотехники, схемотехники и микроэлектроники, конструирования и технологии произ водства РЭС. Следовательно, разработка методического обеспечения САПР РЭС - прерогатива специалистов в области радиотехники и электроники. Обычно в качестве обособленных блоков в методическом обеспечении выделяются математическое и лингвистическое обеспечения. Математическое обеспечение - это совокупность математических моделей, методов и алгоритмов для решения задач автоматизированного проектирования. Лингвистическое обеспечение представляет собой совокупность языков, используемых в САПР для представления информации о проектируемых объектах, процессе и средствах проектирования и для осуществления диалога между проектировщиками и ЭВМ. Если математическое и лингвистическое обеспечения являются полностью самостоятельными в составе САПР, то под методическим обеспечением САПР понимают входящие в ее состав документы, регламентирующие порядок ее эксплуатации. Документы (методики, организационные, директивные документы), относящиеся к процессу создания САПР, не входят в состав методического обеспечения. Данное уточнение весьма принципиально, так как даже специалисты в области САПР нередко рассматривают методическое обеспечение САПР как методы разработки. Однако отдельные документы, выпущенные при создании и для создания САПР, могут войти в состав САПР и использоваться при ее эксплуатации. Например, для создания САПР разрабатываются структуры и описания баз данных, инструкции по их заполнению и ведению. Эти документы могут остаться неизменными и стать частью методического обеспечения САПР. Порядок разработки такого рода документов, относящихся к процессу создания САПР и затем включаемых в ее состав, а также обязательный состав эксплуатационных документов определены государственными стандартами. Компоненты методического обеспечения создаются на основе перспективных методов проектирования, поиска новых принципов действия и технических решений, эффективных математических и других моделей проектируемых объектов, применения методов многовариантного проектирования и оптимизации, использования типовых и стандартных проектных процедур, стандартных вычислительных методов. Совершенствование организации работ в области автоматизации проектирования направлено на централизованное создание типовых программно-методических комплексов (ПМК) в целях их широкого тиражирования. Такие комплексы должны включать, наряду с программами для вычислительной техники и базами данных, еще комплекты документации. При применении ПМК указанная документация становится частью методического обеспечения САПР.
Дата добавления: 2013-12-13; Просмотров: 536; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |