Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Молекулярно-кинетическая теория




 

Первый этап развития молекулярно-кинетической теории связан с исследованием наиболее простой среды - газа. Д. Джоуль, Р. Клаузиус и др. вычислили средние значения скорости молекул, числа их столкновений в секунду, длины свободного пробега. Была получена зависимость давления газа от числа молекул в единице объёма. Температура стала рассматриваться как мера средней кинетической энергии молекул.

Второй этап связан с работами Дж. К. Максвелла. В 1859 г. он впервые ввёл понятие вероятности и сформулировал закон распределения молекул по скоростям, что привело к созданию статистической механики. Чрезвычайно велика роль Максвелла в разработке и становлении молекулярно-кинетической теории (современное название - статистическая механика). Максвелл первым высказал утверждение о статистическом характере законов природы. В 1866 им был открыт первый статистический закон распределения молекул по скоростям (Максвелла распределение). Кроме того, он рассчитал значения вязкости газов в зависимости от скоростей и длины свободного пробега молекул, вывел ряд соотношений термодинамики.

На основе этих исследований Людвиг Больцман построил кинетическую теорию газов и дал статистическое обоснование законов термодинамики. Ему удалось согласовать обратимое во времени движение отдельных молекул с необратимым характером макроскопических процессов. Термодинамическому равновесию системы соответствует максимум вероятности данного состояния. Необратимость процессов связана со стремлением систем к наиболее вероятному состоянию.

Обобщим, основные положения молекулярно-кинетической теории:

Все тела состоят из молекул.

Молекулы находятся в непрерывном тепловом (хаотическом) движении.

Между молекулами существуют силы притяжения и отталкивания.

Опытными подтверждениями этих положений служат такие явления как:

Диффузия, которая представляет собой процесс проникновения молекул одного вещества в межмолекулярные промежутки другого вещества под действием теплового движения.

Броуновское движение, представляющее хаотическое движение макроскопических частиц, взвешенных в газе или жидкости под действием тепловых ударов молекул жидкости или газа.

Различные явления упругости и агрегатных состояний вещества.

Вещество дискретно, то есть состоит из огромного количества мельчайших частиц. Таково общепринятое ныне следствие атомистического учения, возникшего ещё в античности, одним из современных аналогов которого является молекулярная теория. Она даёт ответ на вопрос о том, что происходит внутри тел, когда они плавятся, испаряются, меняется их температура и т. д. Молекула - общее название мельчайших частиц вещества, сохраняющих свои химические свойства. Молекулы отличаются друг от друга. Например, у паров металла и инертных газов они представляют собой отдельные атомы, у водорода, кислорода состоят из двух атомов и т. д. Молекулы сложных веществ состоят из различных атомов элементов, входящих в их состав.

Можно ли увидеть молекулу? Мы реагируем на свет, который представляет собой волны с очень малой длиной: несколько тысяч ангстрем (1 ангстрем «1А» равен 10-8см). Они и создают видимое изображение. Например, с помощью сильного микроскопа можно увидеть бактерии размером от 10000 до 1000 ангстрем. Далее непосредственное зрительное восприятие обрывается - его ограничивает длина волны видимого света. Волны могут сделать видимыми препятствия, которые по своим размерам больше или порядка их длины. Длины световых волн, то есть воспринимаемого нашим глазом электромагнитного излучения, лежат в пределах от 7000А для красного до 4000А - для фиолетового. Попытки преодолеть это препятствие в области коротковолнового ультрафиолета с помощью фотоплёнки вместо глаза не привели к успеху, так как волны поглощались. Рентгеновские лучи тоже оказались недостаточно короткими, чтобы высветить структуру молекулы. Они проходят через вещество, но плохо фокусируются и дают размытую теневую картину. В лучшем случае они выявляют расположение атомов и расстояние между слоями в кристаллах.

Но изобретение электронного микроскопа позволило получать на фотоплёнке сильно увеличенное изображение молекул. В нём вместо света через исследуемый тонкий образец проходит пучок электронов, который затем фокусируется электрическими и магнитными полями. Длины электронных волн настолько меньше световых, что позволяют различать даже форму молекул. Конечно, надо помнить, что, в конечном счете, мы можем видеть только их увеличенное изображение, но не сами молекулы. Молекулы оказались состоящими из ещё более мелких частиц - атомов. В свою очередь атомы оказались сложными системами, состоящими из электронов и ядер, а сами ядра - состоящими из различных частиц.

Любая частица обладает энергией, обусловленной как её движением, так и положением в пространстве. Соответственно мы говорим о кинетической и потенциальной энергии. Частица, находящаяся в гравитационном поле Земли, обладает потенциальной энергией, зависящей от её высоты. Аналогично деформированная пружина обладает потенциальной энергией, зависящей от степени её сжатия и т. д.

Движущаяся частица обладает кинетической энергией, причем, чем быстрее она движется, тем больше энергия. Покоящаяся частица не имеет кинетической энергии.

Наиболее важное свойство полной энергии тела или частицы (суммы её потенциальной и кинетической энергии) - её сохраняемость и неизменность в отсутствие действия внешних сил. В этом сущность закона сохранения энергии.

Закон сохранения энергии имеет всеобъемлющее значение. Он применим ко всем без исключения явлениям природы. Энергия тел зависит от их скоростей, положения, температуры, формы, химического состава и т. д. Изменение энергии тел происходит либо за счёт работы, совершаемой этими телами, либо за счёт передачи энергии другим телам. Если мы рассматриваем все тела, участвующие в процессе, то полная энергия их остаётся неизменной. Самым существенным в этом законе является необходимость учитывать все тела, участвующие в рассматриваемых процессах. Как правило, сделать это очень трудно. Кажущиеся отступления от этого закона объясняются недостаточно строгим учётом всех происшедших изменений.

Всякий процесс, происходящий в природе, можно рассматривать как превращение отдельных видов энергии друг в друга. Установление закона сохранения и превращения энергии означает выработку представления о различных видах энергии, об их материальной сущности. Закон сохранения энергии связан с несотворимостью и неуничтожимостью движения. Между качественно различными видами движения существует количественное отношение, общей мерой которого является энергия - свойство качественно различных форм движения материи переходить друг в друга в строго эквивалентных количествах.

Энергия «вообще» не что иное, как абстракция, так как в действительности существуют различные виды движения и энергии, а не энергия сама по себе. Например, энергия потенциальная, кинетическая, тепловая, упругости, электрическая, химическая, излучения, ядерная и т. д. Сущность переноса энергии в переносе материального движения на основе закона сохранения и превращения. Перенос характеризуется импульсом mv. Французский философ и математик Анри Пуанкаре сказал об энергии следующее: «Так как мы не в силах дать общего определения энергии, принцип сохранения её попросту означает, что существует нечто, остающееся постоянным. Поэтому, к каким бы новым представлениям о мире не привели нас будущие эксперименты, мы заранее знаем: в них будет нечто остающееся постоянным, что можно назвать энергией».

Разновидностью закона сохранения энергии является закон сохранения массы вещества. Сохранение веществ в биосферных процессах, в географической оболочке означает, что число атомов не меняется и масса каждого атома как мера его инертных и гравитационных свойств постоянна. В химических, биологических, тепловых, механических, электрических, магнитных явлениях - там, где не происходит взаимопревращения элементарных частиц, действует закон сохранения массы.

В процессах ядерных превращений изменение в системе масса - поле действует вариант этого закона: закон сохранения полной массы системы. Закон всемирного тяготения привёл к понятию гравитационной массы. Механика Ньютона ввела понятие инертной массы. Кстати, одной из загадок природы является равенство гравитационной и инертной масс. В классической механике масса тела величина постоянная. В релятивистской механике любая масса зависит от скорости движения. В ней различают «массу покоя» и «массу движения». Все элементарные частицы по массе можно разбить на две группы: имеющие и не имеющие массу покоя. Частицы, не имеющие массы покоя, могут двигаться только со скоростью света. Определений понятия «масса» много, но общепризнанное отсутствует. В основе определения массы понятие веса: иметь массу означает быть тяжёлым и инертным.

 




Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 1260; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.