КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Квантовая теория
Начало развитию квантовой теории положили относящиеся к 1900 г. работы Макса Планка по теории излучения «черного тела». Попытка построить теорию излучения черного тела на основе законов классической физики привела к серьезным трудностям. Объясним, прежде всего, в чем заключались эти трудности. Рассмотрим замкнутую полость, поддерживаемую при постоянной температуре и содержащую какие-либо материальные тела, способные испускать и поглощать излучение. Если эти материальные тела имели в начальный момент какую-либо температуру, отличную от температуры полости, то с течением времени в результате процессов испускания и поглощения температура их будет стремиться к температуре полости. Иначе, система будет стремиться к состоянию термодинамического равновесия, характеризуемому равновесием между поглощаемой и излучаемой в единицу времени энергией. Это означало бы, что обмен энергией внутри рассматриваемой полости должен приводить к передаче энергии от любой длины волны к более короткой до тех пор, пока практически вся энергия не окажется в ультрафиолете или ещё дальше. То есть в соответствии с существующим законом Рэлея спектральная плотность энергии излучения должна была монотонно возрастать с увеличением частоты. На графике это означало бы, что кривая, показывающая спектральную плотность энергии, стремилась бы к бесконечности в области ультрафиолета. В то же время было очевидно, что эта «ультрафиолетовая катастрофа» не наблюдается у реальных излучателей, от разогретого докрасна железа до ярко-белого Солнца. Они излучают тепло в виде оранжевого света, вместо того чтобы остывать из-за быстрой ультрафиолетовой вспышки. Все эксперименты определенно указывали на то, что с увеличением частоты спектральная плотность вначале растет, а затем, начиная с некоторой частоты, соответствующей максимуму плотности, падает, стремясь к нулю, когда частота стремится к бесконечности. Иначе говоря, кривая спектральной плотности энергии имеет колоколообразный вид. Это явно противоречило теории, поскольку по закону Рэлея спектральная плотность оказывалась монотонно возрастающей функцией частоты, а значит, отсюда следовал абсолютный вывод: полная плотность энергии черного излучения при всех температурах должна быть бесконечной! Положение, сложившееся в результате этого расхождения между теорией и экспериментом, было очень серьезным, так как оно свидетельствовало, и многие физики это сознавали, о каком-то существенном недостатке классических теорий, непосредственным следствием которых был закон Рэлея. М. Планк, приступая к решению этой задачи, располагал только той самой экспериментальной колоколообразной кривой, о которой мы говорили выше. Он задался вопросом: как нужно минимально изменить (модифицировать) теорию, чтобы согласовать её с фактами? Он заметил, что необходимо некоторое правило, которое бы оставляло красный свет практически неизменным, но подавляло бы фиолетовое и ультрафиолетовое излучение. Суть предположения Планка состояла в том, что энергия излучения упакована маленькими (атомных масштабов) порциями (квантами). Размер квантов не одинаков для разных цветов - они крошечные у инфракрасного, маленькие у зелёного и большие у ультрафиолетового излучения. Как повлияет такая упаковка энергии излучения на предсказываемый спектр излучения? Предположим, что в полости есть отверстие, через которое происходит излучение, и рассмотрим обмен энергией между излучением и стенками полости. Квантовые ограничения будут наиболее заметны для ультрафиолетового конца спектра, где кванты велики. Инфракрасный свет будет непрерывно изливаться обильным потоком крошечных квантов, неспособных повлиять на обмен энергией. Но ультрафиолетовый свет должен либо излучаться большими квантами, либо вовсе не излучаться. Голубое, фиолетовое и ультрафиолетовое излучение будут существенно подавлены, и тем самым будет предотвращена «ультрафиолетовая катастрофа». Более детально правило Планка гласит: Излучение упаковано порциями (кванты). Каждый квант состоит из излучения единственной частоты (и, следовательно, единственной длины волны, то есть из света «одного цвета» - из монохроматического излучения). Правило, определяющее размер квантов: энергия кванта пропорциональна частоте излучения в данном кванте, или энергия Е=hυ (постоянная Планка на частоту излучения). Квантовая теория атома была развита Бором в 1913 году. В это время физики склонялись к планетарной модели атома. Согласно этой модели атом состоит из находящегося в центре тяжелого положительно заряженного ядра, в котором сосредоточена почти вся масса атома и электронов-«планет», вращающихся вокруг ядра. Справедливость этой модели, предложенной впервые Перреном, была подтверждена опытами Резерфорда, который показал, что внутри атома действительно находится ядро, обладающее положительным зарядом и чрезвычайно малыми размерами. Однако эта планетарная модель находилась в противоречии с выводами классической электродинамики об излучении ускоренно движущихся заряженных частиц. Планетарная модель предполагала, что электроны вращаются, подобно планетам, по кеплеровым орбитам вокруг центрального ядра и имеют частоту обращения, зависящую от их кинетической энергии и изменяющуюся вместе с ней. Поэтому если классическая теория излучения применима к внутриатомным электронам, то электроны-планеты должны постепенно терять энергию, излучая волны непрерывно меняющейся частоты, и, в конце концов, упасть на ядро и нейтрализовать его. Таким образом, в рамках классической теории планетарная модель не позволяла объяснить ни монохроматический характер спектральных линий, ни устойчивость атомной системы. Такими были трудности, с которыми столкнулся Нильс Бор в начале своих исследований. Громадная заслуга Бора состоит именно в том, что он ясно понял, что нужно сохранить планетарную модель атома, введя в нее фундаментальные идеи квантовой теории. В соответствии с этой теорией среди бесконечного множества всевозможных движений, допускаемых классической механикой, только некоторые квантованные движения оказываются устойчивыми и обычно осуществляются в природе. Для систем, совершающих одномерное периодическое движение, это условие квантования было введено Планком. Обобщение же этого условия на случай периодического движения, определяемого более чем одним параметром, к тому времени, когда Бор написал свои первые работы, еще не было известно. Бор предположил, что движение атомных систем должно быть квантованным, то есть должно подчиняться некоторым условиям или, как иногда говорят, правилам квантования. Следовательно, каждый атом должен обладать некоторой последовательностью квантованных, или стационарных состояний. Если атом изолирован и образует замкнутую систему, то каждое из этих стационарных состояний характеризуется некоторым квантованным значением энергии. Таким образом, каждый вид атома характеризуется последовательностью квантованных значений энергии, соответствующих возможным различным стационарным состояниям. Иначе говоря, атому каждого элемента соответствует последовательность чисел, определяющих энергию различных состояний, в которых этот атом может находиться. Вывод, очевидно, прямо противоположный выводу классической электродинамики, согласно которой электроны-планеты, движущиеся с ускорением, должны были бы непрерывно излучать электромагнитные волны. Почему электрон не падает на ядро? Постулируя стационарные состояния, теория Бора не объяснила, почему все-таки электрон, двигаясь ускоренно, не излучает и не падает в результате на ядро. Это, очевидно, объясняется тем, что падение электрона на ядро существенно уменьшило бы неопределенность его координат: если до падения на ядро электрон был локализован в пределах атома, то есть в области пространства размерами порядка 10-8 см, то после падения на ядро электрон должен быть локализован в области с линейными размерами меньше 10-12 см. Более сильная локализация микрообъекта в пространстве связана с «размытием» его импульса, поэтому при падении на ядро среднее значение импульса электрона должно возрасти, для чего требуется затрата энергии. Получается, что нужно усилие отнюдь не для того, чтобы «удержать» электрон от падения на ядро, а совсем наоборот - нужно усилие, чтобы заставить электрон локализоваться в пределах ядра. Если бы электрон упал на ядро, это должно было привести к его локализации в области с размерами от 10-8 до 10-12 см. При этом минимальная энергия должна возрасти - от 10 до 109 эВ (и больше). В результате минимальная энергия электрона оказывается на несколько порядков больше энергии связи нуклона в атомном ядре. Это значит, что в ядерной «потенциальной яме» электрон вообще не реализуется, так что никаким образом даже «насильно» нельзя его заставить локализоваться в пределах ядра. Тем самым не только снимается «проблема падения электрона на ядро», но и решается другой принципиальный вопрос: в состав атомного ядра электроны не входят. Итак, только переход атома из одного стационарного состояния в другое с изменением энергии сопровождается излучением. Бор предположил, что каждая спектральная линия соответствует мгновенному переходу атома из одного квантового состояния в другое, характеризуемое меньшим значением энергии. Избыток энергии уносится излучением. При этом в квантовой теории вполне естественно считать, что энергия излучается в виде отдельных квантов, или фотонов. Таким образом, при переходе атома из одного стационарного состояния в другое он испускает фотон, энергия которого равна разности энергий начального и конечного состояний атома. Итак, Бор построил свою квантовую теорию атома на двух основных положениях: атом обладает последовательностью стационарных состояний, соответствующих движениям, удовлетворяющим условиям квантования Планка, и только эти состояния могут быть физически реализованы; спектральное излучение может испускаться лишь при переходе атома из одного стационарного состояния в другое, причем частота этого излучения определяется вышеуказанным правилом частот.
Дата добавления: 2013-12-13; Просмотров: 830; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |