Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Модель OSI

Понятие "открытая система" и проблемы стандартизации.

Универсальный тезис о пользе стандартизации, справедливый для всех отраслей, в компьютерных сетях приобретает особое значение. Суть сети - это соединение разного оборудования, а значит, проблема совместимости является одной из наиболее острых. Без принятия всеми производителями общепринятых правил построения оборудования прогресс в деле «строительства» сетей был бы невозможен. Поэтому все развитие компьютерной отрасли, в конечном счете, отражено в стандартах - любая новая технология только тогда приобретает «законный» статус, когда ее содержание закрепляется в соответствующем стандарте.

В компьютерных сетях идеологической основой стандартизации является многоуровневый подход к разработке средств сетевого взаимодействия. Именно на основе этого подхода была разработана стандартная семиуровневая модель взаимодействия открытых систем, ставшая своего рода универсальным языком сетевых специалистов.

Организация взаимодействия между устройствами в сети является сложной зада­чей. Как известно, для решения сложных задач используется универсальный при­ем - декомпозиция, то есть разбиение одной сложной задачи на несколько более простых задач-модулей. Процедура декомпозиции включает в себя четкое определение функций каждого модуля, решающего отдельную задачу, и интер­фейсов между ними. В результате достигается логическое упрощение задачи, а, кроме того, появляется возможность модификации отдельных модулей без изменения остальной части системы.

В 1983 году ряд международных организаций по стандартизации - ISO, ITU-T и некоторые другие - разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью OSI. Модель OSI определя­ет различные уровни взаимодействия систем, дает им стандартные имена и указы­вает, какие функции должен выполнять каждый уровень. Модель OSI была разработана на основании большого опыта, полученного при создании компьютерных сетей, в основном глобальных, в 70-е годы. Полное описание этой модели занимает более 1000 страниц текста.

Модель строилась на следующих предпосылках:

- каждый уровень выполняет отдельную функцию;

- модель и ее уровни должны быть совместимы в международном масштабе;

- количество уровней должно быть достаточным, но не избыточным.

 
 

Модель OSI (рис. 1.25) разделяет процессы, происходящие во время сеанса связи, на семь различных функциональных уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Эти уровни организованы в соответствии с естественной последовательностью событий, возникающих на протяжении сеанса соединения и имеет дело с одним определенным аспектом взаимо­действия сетевых устройств.

Каждый уровень модели выполняет отдельную функцию:

Физический уровень (Physical layer) – имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, оптоволо­конный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, передающих диск­ретную информацию, например, крутизна фронтов импульсов, уровни напряже­ния или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключен­ных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

Примером протокола физического уровня может служить спецификация 10Base-Т технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных в кабеле, а также некоторые другие характеристики среды и электрических сигналов.

В основном именно этот уровень гарантирует, что посланный с одной стороны сети бит будет корректно принят на другой стороне.

Канальный уровень(Data link layer) - На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) поперемен­но несколькими парами взаимодействующих компьютеров, физическая среда пе­редачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок.

Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность, бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпада­ют, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Необходимо отметить, что функция исправления ошибок не является обя­зательной для канального уровня, поэтому в некоторых протоколах этого уровня она отсутствует, например, в Ethernet и frame relay.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологи­ей связей, именно той топологией, для которой он был разработан. К таким типо­вым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда, а также структуры, полученные из них с помощью мостов и коммутаторов. Примерами протоколов канального уров­ня являются протоколы Ethernet, Token Ring, FDD!, lOOVG-AnyLAN.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канально­го уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

В глобальных сетях, которые редко обладают регулярной топологией, каналь­ный уровень часто обеспечивает обмен сообщениями только между двумя соседни­ми компьютерами, соединенными индивидуальной линией связи. Примерами протоколов «точка-точка» (как часто называют такие протоколы) могут служить широко распространенные протоколы РРР и LAP-B. В таких случаях для достав­ки сообщений между конечными узлами через всю сеть используются средства сетевого уровня. Именно так организованы сети Х25. Иногда в глобальных сетях функции канального уровня в чистом вида выделить трудно, так как в одном и том же протоколе они объединяются с функциями сетевого уровня. Примерами такого подхода могут служить протоколы технологий АТМ и frame relay.

В целом канальный уровень представляет собой весьма мощный и законченный набор функций по пересылке сообщений между узлами сети. В некоторых случаях протоколы канального уровня оказываются самодостаточными транспортными средствами и могут допускать работу поверх них непосредственно протоколов при­кладного уровня или приложений, без привлечения средств сетевого и транспортного уровней. Например, существует реализация протокола управления сетью SNMP непосредственно поверх Ethernet, хотя стандартно этот протокол работает поверх сетевого протокола IP и транспортного протокола UDP. Естественно, что примене­ние такой реализации будет ограниченным - она не подходит для составных сетей разных технологий, например Ethernet и Х.25, и даже для такой сети, в которой во всех сегментах применяется Ethernet, но между сегментами существуют петлевидные связи. А вот в двухсегментной сети Ethernet, объединенной мостом, реализа­ция SNMP над канальным уровнем будет вполне работоспособна.

Тем не менее, для обеспечения качественной транспортировки сообщений в се­тях любых топологий и технологий функций канального уровня оказывается недо­статочно, поэтому в модели OSI решение этой задачи возлагается на два следующих уровня - сетевой и транспортный.

Сетевой уровень (Network layer) – служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать совершенно различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей. Функции сетевого уровня достаточно разнообразны. Начнем их рассмотрение на примере объединения локальных сетей.

Протоколы канального уровня локальных сетей обеспечивают доставку данных между любыми узлами только в сети с соответствующей типовой топологией, на­пример топологией иерархической звезды. Это очень жесткое ограничение, кото­рое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Можно было бы усложнять прото­колы канального уровня для поддержания петлевидных избыточных связей, но принцип разделения обязанностей между уровнями приводит к другому решению. Чтобы с одной стороны сохранить простоту процедур передачи данных для типо­вых топологий, а с другой допустить использование произвольных топологий, вво­дится дополнительный сетевой уровень.

На сетевом уровне сам термин сеть наделяют специфическим значением. В дан­ном случае под сетью понимается совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии.

Внутри сети доставка данных обеспечивается соответствующим канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень, который и поддерживает возможность правильного выбора маршрута передачи сообщения даже в том случае, когда структура связей между составляющими сетями имеет характер, отличный от принятого в протоколах канального уровня.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор - это устройство, которое собирает инфор­мацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно со­вершить некоторое количество транзитных передач между сетями, или хопов (от hop — прыжок), каждый раз, выбирая подходящий маршрут. Таким образом, марш­рут представляет собой последовательность маршрутизаторов, через которые проходит пакет.

На рис.1.5 показаны четыре сети, связанные тремя маршрутизаторами. Меж­ду узлами А и В данной сети пролегают два маршрута: первый через маршрутиза­торы 1 и 3, а второй через маршрутизаторы 1, 2 и 3.

 

Рис.1. 5 Пример составной сети

 

Проблема выбора наилучшего пути называется маршрутизацией, и ее решение является одной из главных задач сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту; оно зависит от пропускной способности каналов связи и интенсивности графика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осу­ществляться и по другим критериям, например надежности передачи.

В общем случае функции сетевого уровня шире, чем функции передачи сооб­щений по связям с нестандартной структурой, которые мы сейчас рассмотрели на примере объединения нескольких локальных сетей. Сетевой уровень решает также задачи согласования разных технологий, упрощения адресации в крупных сетях и создания надежных и гибких барьеров на пути нежелательного графика между сетями.

Сообщения сетевого уровня принято называть пакетами (packets). При органи­зации доставки пакетов на сетевом уровне используется понятие «номер сети». В этом случае адрес получателя состоит из старшей части - номера сети и млад­шей - номера узла в этой сети. Все узлы одной сети должны иметь одну и ту же старшую часть адреса, поэтому термину «сеть» на сетевом уровне можно дать и другое, более формальное определение: сеть - это совокупность узлов, сетевой ад­рес которых содержит один и тот же номер сети.

На сетевом уровне определяются два вида протоколов.

- Первый вид - сетевые протоколы (routed protocols) - реализуют продвижение пакетов через сеть. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня.

- Однако часто к сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией или просто протоколами маршру­тизации (routing protocols). С помощью этих протоколов маршрутизаторы собира­ют информацию о топологии межсетевых соединений.

- Протоколы разрешения адресов - Address Resolution Protocol, ARP - отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Иногда их относят не к сетевому уровню, а к канальному, хотя тонкости классификации не изменяют их сути.

Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программ­ными и аппаратными средствами маршрутизаторов.

Примерами протоколов сетевого уровня являются протокол межсетевого взаи­модействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

Транспортный уровень (Transport layer) - На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соедине­нием. Транспортный уровень обеспечивает приложениям или верх­ним уровням стека - прикладному и сеансовому - передачу данных с той степенью надежности, котораяим требуется.

Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг, срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между раз­личными прикладными протоколами через общий транспортный протокол, а глав­ное - способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Выбор класса сервиса транспортного уровня определяется, с одной стороны, тем, в какой степени задача обеспечения надежности решается самими прило­жениями и протоколами более высоких, чем транспортный, уровней, а с другой стороны, этот выбор зависит от того, насколько надежной является система транспортировки данных в сети, обеспечиваемая уровнями, расположенными ниже транспортного - сетевым, канальным и физическим.

Так, например, если качество каналов передачи связи очень высокое и вероятность возникновения ошибок, не обнаруженных протоколами более низких уровней, невелика, то разумно воспользоваться одним из облегченных сервисов транспортного уров­ня, не обремененных многочисленными проверками, квитированием и другими приемами повышения надежности. Если же транспортные средства нижних уровней изначально очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного уровня, который работает, используя макси­мум средств для обнаружения и устранения ошибок, - с помощью, предвари­тельного установления логического соединения, контроля доставки сообщений по контрольным суммам и циклической нумерации пакетов, установления тайм-аутов доставки и т. п.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализу­ются программными средствами конечных узлов сети — компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно при­вести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

 

Протоколы нижних четырех уровней обобщенно называют сетевым транспор­том или транспортной подсистемой, так как они полностью решают задачу транс­портировки сообщений с заданным уровнем качества в составных сетях с произвольной топологией и различными технологиями. Остальные три верхних уровня решают задачи предоставления прикладных сервисов на основании имею­щейся транспортной подсистемы.

 

Сеансовый уровень (Session layer) – координирует параметры диалога/сеанса/соединения между устройствами сети. Этот уровень управляет связью между сеансами соединения. Примерами служат управление маркерами (в обязанности уровня входит определение владельца маркера) и синхронизация сетевого времени.

 

Уровень представления данных или представительный уровень (Presentation layer) – управляет представлением информации в сети. Основной функцией уровня является синтаксически анализ передаваемых данных. На этом уровне представляемые в формате хост-компьютер данные преобразуются в необходимый для передачи формат. На стороне получателя данные стандартного формата преобразуются в соответствующий хост-компьютеру формат. В результате хост может воспользоваться принятыми данными. Примерами служат преобразования между кодовыми таблицами ASCII и EBCDIC, криптография и т.п.

 

Уровень протокола или прикладной уровень (Application layer) - предоставляет пользователю возможность доступа к информации сети путем использования протокола. Для пользователей этот уровень является главным интерфейсом взаимодействия с протоколом и, следовательно, с сетью. В качестве примеров можно привести протокол передачи файлов (FTP), службу названий доменов (DNS) и т.п.

<== предыдущая лекция | следующая лекция ==>
Организация совместного использования линий связи | 
Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 594; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.