Kinematics – it is a part of mechanics which study a ways of description of motion and bond between quantities of motion
Рhysics is science about the nature
Kinematics of point
A particle at time t moving along a curved path in this plane. Its position or displacement from the origin is measured by the vector; its velocity is indicated by the vector v. The acceleration is indicated by the vector a.
S v
a r
If the particle moves along the x axis from position x1 to position x2 its displacement is given by x1 - x2 (x1 –initial and x2- final values). We use the Greek letter delta (D) to denote the change in a quantity. Therefore, we definite the change in the position of the particle as
Uniform motion on circleit is very simple motion, because |u|= constbut direction changes.
The velocity of body in any point of the curvilinear trajectory will direct on tangent to curve in this point
At curvilinear motion the acceleration always direct to center of circle
An angle in radians q is given by the ratio between the are length S that subtends the angle to the radius of the circle
q = S/R
φ = 2π, were φ is angle of turning
1 rad = 3600/ 2π
Centripetal acceleration. As the particle proceeds along its circular orbit, R continually changes its direction even through w may be constant. As a result velocity also changes in direction.
In Fig.1 the velocity vector of such a particle is shown at two nearly points in its path. These vectors have the same magnitude, but their directions differ. The average acceleration which the particle experiences between these points is called the centripetal acceleration
ac = Du/Dt = (u2 - u1)/ (t2 – t1)
The triangles bounded by R1DR R2, and by u1Duu2 are similar to one another, since R1 ^u2, R2 ^u1
Then Du/u = DR/R or Du = uDR/R
DR = s, then Du = us/R
ac = Du/Dt
ac = us/R Dt
s/Dt = u
ac = u2/R
Fig 1. Computing centripetal acceleration.
Let’s the centripetal acceleration characterize across r and T – period of rotation and frequency n.
The linear velocity equal to: u = 2 πR/T
The angular velocity w it is ratio of the angle of turning Dφ to time interval Dt
w = Dφ / Dt If at time t=T the body perfects one turning and Dφ=2π, then w = 2π/T
The unit of the angular velocity is rad/s
n = 1/T, then w = 2πn
Most of experienced waves as children when we dropped a pebble into a pond. The disturbance created by the pebble excites ripple waves, which move outward, finally reaching the chore of the pond. The water wave (or disturbance) moves from one place to another, yet the water is not carried with it. Water waves represent only one example of a wide variety of physical phenomena that have wavelike characteristics. The world is full of waves: sound waves; mechanical waves, such as a wave on a string; earthquake waves; shock waves generated by supersonic aircraft; electromagnetic waves, such as visible light, radio waves, television signals and x-rays.
Three physical characteristics are important in characterizing waves: the wavelength, the frequency and the wave velocity. One wavelength is the distance between any two pints on a wave that behave identically. For example, in the case
of water waves, the wavelength is the distance between adjacent crests or between adjacent troughs. Most waves are periodic in nature. The frequency of such periodic waves is the rate at which the disturbance repeats itself. Wave travel or propagate, with a specific velocity, which depends on the properties of the medium being disturbed
The shape of the harmonic wave is a sinusoidal curve, as shown in fig. 1.
The constant A called the amplitude of the wave, represents the maximum value of the displacement. The constant l called the wavelength of the wave, equals the distance between two successive maxima, which we shall refer to as crests, or between any two adjacent points that have the same phase.
The time it takes the wave to travel a distance of one wavelength is called the period, T. Therefore, the phase velocity, wavelength and period are related by u = l/T or l = u/T
Definition of amplitude and beginning conditions of harmonic waves
Representation of harmonic vibration with the help of sine and cosine
x = xm sin (w0t+φ0) or
x’ = w0xm cos (w0t+φ0) or
at t=0 x0 = xm sin φ0
Velocity of oscillations is
acceleration is
Phase of oscillation At a given amplitude of harmonic vibration the coordinate of body at any moment of time is determined by the argument of cosine and sine φ = ωot.
φ = (w0t+φ0) – is phase
If time t =0, then φ = φ0. In this case the means of the phase called initial phase and
x = xm sin w0t or x = xm cos w0t
If ωo = 2π/T, then φ = ωot = 2πt/T. The relation t/T indicates what parts of period passed from moment of begin vibration. Any value of time expressed in portions [shares] of period corresponds to the value of phase expressed in radian
Dictionary
disturbance
Беспокойство, волнение, нарушение порядка
Ретсіздік
excites
Вызывать интерес, возвуждать
қоздыру
ripple
журчание
сыңғырлау
earthquake
Землетресение
Жер сілкініс
adjacent
Смежный,соседний
іргелес
troughs
Подошва волны
Тоқын етегі
crests
Гребень волны, максимум
Толқын айдары
harmonic vibration
Гармонические колебания
Гармоникалық тербелістер
Frequency
частота
жиілік
amplitude
амплитуда
амплитуда
Beginning conditions
Начальные условия
Бастапқы шарттар
Free oscillations
свободные колебания
Еркін тербелістер
Forced oscillations
вынужденные колебания
Еріксіз тербелістер
phase of oscillation
фаза колебаний
Тербелістер фазасы
radian
радиан
радиан
English
Russian
Kazakh
Description
oписывать
сүреттеу
magnitude
величина, важность
мән, маңызды
path
обрывок, кусок. учсаток
қиқым
distinctly
определнный, ясный
нақты, белгіленген
proof
проверка
тексеру
Space
пространство
кеңістік
Straightforward
прямолинейное
тік сызықты
uniform
равномерное
біртекті
circle
окружность
шеңбер
curvilinear
криволтнейное
қысықсызықты
angle of turning
угол поворота
айналу бұрышы
Centripetal
центростремительное
центрге тартқыш
acceleration
ускорение
үдеу
perfects
совершать
жасау
Оның қозғалысының дифференциал теңдеуі
Нүктенің толық энергиясы
Пружинді маятник тербелісінің периоды m- дене массасы; к-пружинаның қатаңдығы
Математикалық маятниктің тербеліс периоды
-маятник ұзындығы
g- еркін түсу үдеуі
Математикалық маятник деп- ұзын жіпке ілінген кішкентай денені айтады.
Физикалық маятниктің тербеліс периоды ;
J- тербелмелі оське қатысты дененің инерция моменті;
а-тербелмелі осьтен маятник центіріне дейінгі қашықтық
физикалық маятниктің келтірілген ұзындығы.
Физикалық маятник деп, горизонталь оське бекітілген және өзінің масса центірінен өтпейтін оське қатысты тербелістегі денені айтады
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление