КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение. А теперь решаем новую задачу о нахождении полного удлинения уже для данного стержня (рис
Рис.2.25 Пример 11. Рис.2.24. А теперь решаем новую задачу о нахождении полного удлинения уже для данного стержня (рис. 2.23): , .
Расчет статически определимых стержневых систем Статически определимая стержневая система – это система, в которой все неизвестные реакции опор и внутренние усилия можно определить из уравнений равновесия (статики). Для «решения» любой стержневой системы необходимо выделить в ней объект равновесия. В связи с этим, все системы можно разделить на два типа: 1 тип – системы, состоящие из абсолютно жестких (недеформируемых) стержней и одиночных невесомых (деформируемых) стержней. Для стержневых систем этого типа объектами равновесия являются недеформируемые стержни. 2 тип – системы, состоящие из нескольких деформируемых стержней, соединенных в одной точке. Точки соединения двух и более стержней называются узлами, которые и являются объектами равновесия для систем 2-го типа. Все соединения в элементах систем шарнирные, однако существуют определенные правила, по которым вводятся реакции и усилия в стержнях: - в шарнире, соединяющем абсолютно жесткий элемент системы с «землей» или с другой конструкцией, всегда возникают две реакции – горизонтальная и вертикальная ; - в шарнире, соединяющем деформируемый стержень с абсолютно жестким стержнем или с другой конструкцией, всегда возникает одна реакция, направленная вдоль этого стержня и равная по величине усилию, возникающему в нем. В абсолютно жестких стержнях никогда не возникает внутренних усилий, они не деформируются! - в шарнире, соединяющем несколько деформируемых стержней (узловой шарнире), возникают усилия, направленные вдоль этих стержней и сходящиеся в этом узле. Порядок решения большинства задач о проверке прочности статически определимых стержневых систем при расчете по допускаемым напряжениям сводится к следующим этапам: 1) находим внутренние усилия (продольную силу при растяжении-сжатии) и выявляем опасные сечения; 2) определяем напряжения; 3) после выявления максимальных напряжений используем условие прочности (формулы (2.26), (2.28), (2.32)) при растяжении-сжатии).
Абсолютно жесткий брус поддерживается стальным стержнем , имеющим площадь поперечного сечения 100 мм2 (рис.2.25, а). Определить из условия прочности стержня допускаемую нагрузку и проверить, обеспечена ли жесткость системы, если допускается перемещение сечения бруса под действием силы не более 2 мм. Допускаемое напряжение принять равным =150 МПа, модуль упругости Па.
Используя метод сечений, определим соотношение между продольной силой в стержне и нагрузкой . Из условия равновесия сил (рис.2.25, б) находим ; ; . Допускаемая продольная сила для стержня из условия его прочности Допускаемая нагрузка на систему При нагружении системы стержень удлиняется на , а абсолютно жесткий брус поворачивается, оставаясь прямолинейным. Система после деформации стержня показана штриховой линией на рисунке 2.25, в. Из треугольника определяем длину стержня : м. На основании принципа начальных размеров принимаем, что значение угла не изменяется, а точки и перемещаются по вертикали. Из прямоугольного треугольника находим ; так как , , то Перемещение точки определяем из подобия треугольников и ; Жесткость системы не обеспечена. Следует заметить, что нельзя повысить жесткость системы, применив для стержня более прочную сталь, так как характеристикой свойств материала, влияющей на жесткость, является модуль упругости, значение которого для всех марок сталей примерно одинаково. Повысить жесткость системы можно, либо увеличив площадь поперечного сечения стержня , либо уменьшив его длину.
Дата добавления: 2013-12-13; Просмотров: 316; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |