КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Оценка предела выносливости при переменном изгибе
Автором совместно с сотрудниками и студентами кафедры [5,6] на основании большого статистического материала рассмотрена и показана возможность достаточно надежной косвенной оценки предела выносливости при симметричном изгибе образцов из алюминиевых и титановых деформируемых сплавов, углеродистых и легированных сталей на основании значений предела прочности при статическом растяжении; рассмотрена точность подобной оценки и даны рекомендации по определению нижних (гарантированных) значений предела выносливости. Анализу были подвергнуты 187 вариантов алюминиевых деформируемых сплавов в различном состоянии, 152 варианта титановых сплавов, 317 вариантов углеродистых и 393 варианта легированных сталей в различных состояниях (варианты режимов термической обработки, виды полуфабрикатов и т.д.). Предел прочности алюминиевых сплавов менялся в диапазоне от 100 до 650 МПа, титановых сплавов – от 350 до 1475 МПа, углеродистых сталей от 300 до 1700 МПа, легированных – от 450 до 2150 МПа. Анализу подверглись результаты испытаний, опубликованные в отечественной и зарубежной литературе. В качестве уравнений линии регрессии рассматривались линейное (2.2) и степенное , (2.3) которое путем логарифмирования приводится к линейному (2.4) где , , , . Предел выносливости для алюминиевых и титановых сплавов соответствует базе 107циклов. Уравнения (2.3) и (2.4) в отличие от линейного уравнения (2.2) удовлетворяют граничным условиям (при ; ). Коэффициент корреляции r между пределом выносливости при симметричном изгибе и пределом прочности при растяжении в случае линейного соотношения (2.2) для всех рассматриваемых материалов находится в пределах 0.87...0.92 и отличается от выборочного значения корреляционного отношения [4] не более, чем на 2..3 величины среднего квадратического отклонения коэффициента корреляции Sr, что не дает достаточных оснований для отклонения линейного уровня (2.2), хотя оно и не удовлетворяет граничным условиям (при ; ). Значение оценок параметров уравнения (2.2), средней квадратической ошибки предела выносливости и относительной погрешности на разных участках линии регрессии приведены в таблице 2.1. Относительная средняя квадратическая ошибка в средней части линии регрессии определяется величиной ; на границах линии регрессии ошибка находится с учетом её зависимости от уровня прочности материала.
Таблица 2.1 Параметры уравнения (2.2) и значения ошибки оценивания предела выносливости на разных участках линии регрессии
Как показывают эксперименты и теоретические расчеты, средняя квадратическая ошибка в определении путем непосредственных испытаний на усталость 8...10 образцов на кривую усталости, как того требует ГОСТ, составляет для алюминиевых сплавов 5...7 %, для сталей 5...10 % и титановых сплавов 7...15%. Поэтому погрешность косвенной оценки предела выносливости материалов средней и высокой прочности (середина и конец линии регрессии), превышающую в 1.5...2 раза ошибку при усталостных испытаниях, следует считать удовлетворительной. Однако, для материалов низкой прочности (начало линии регрессии) это различие достигает 2...3 раз. При объединении двух классов сталей в единую совокупность (n = 668, = 290...2130 МПа, r = 0.906, =53.8 МПа) уравнение линии регрессии запишется как , (2.5) причем, относительная ошибка оценки предела выносливости на всём протяжении линии регрессии возрастает на 1.2%, что позволяет использовать уравнение (2.5) как для углеродистых сталей, так и для легированных. При использовании в качестве уравнения линии регрессии выражения (2.4) коэффициент корреляции для рассматриваемых материалов увеличивается до 0.91...0.95, причем, расхождение с эмпирическим корреляционным отношением не превышает одной величины S r, что говорит о практически полной адекватности линии регрессии экспериментальным данным [4]. Статистический анализ показал, что дисперсия экспериментальных значений вокруг линии регрессии (2.4) практически не зависит от уровня . Эта закономерность равносильна постоянству средней квадратической ошибки оценивания предела выносливости по уравнению (2.3) для материалов малой, средней и высокой прочности. Объединение углеродистых и легированных сталей в один статистический коллектив и в этом случае привел к увеличению погрешности оценивания предела выносливости лишь на несколько процентов, хотя параметры уравнения (2.4) статистически значимо отличаются друг от друга. Это говорит о высокой чувствительности применяемого метода статистического анализа. Уравнения (2.3) для указанных материалов с численными значениями параметров и величиной относительной средней квадратической ошибки оценивания предела выносливости при переменном изгибе приведены ниже: а) алюминиевые сплавы , (2.6) б) титановые сплавы , (2.7) в) углеродистые стали , (2.8) г) легированные стали , (2.9) д) объединенная совокупность сталей , (2.10) Таким образом, нелинейное уравнение (2.3) имеет следующие преимущества перед линейным уравнением (2.2): а) выполняются граничные условия; б) увеличивается коэффициент корреляции r; в) снижается ошибка оценивания предела выносливости для материалов средней и низкой прочности; Поэтому для косвенной оценки предела выносливости при переменном изгибе для указанной группы конструкционных материалов следует пользоваться уравнениями (2.6)-(2.10). Для дальнейшего повышения надежности получаемых косвенным образом характеристик сопротивления усталости целесообразно для практических целей использовать нижнюю (гарантированную) границу предела выносливости, которая определяется из выражения , (2.11) здесь - нижняя (гарантированная) граница значения медианы предела выносливости, которая с вероятностью Р не ниже действительного значения медианы предела выносливости для рассматриваемого материала; - оценка медианы предела выносливости по уравнениям (2.6)-(2.10); - относительная средняя квадратическая ошибка оценивания медианы предела выносливости по уравнениям (2.6)-(2.10); zp — квантиль уровня Р нормального распределения (для Р =0.90, 0.95 и 0.99 значения zp = 1.28, 1.64 и 2.33 соответственно [4]). На рисунке 2.1-2.3 показаны зависимости оценки медианы предела выносливости при переменном изгибе и нижних гарантированных значений для вероятностей 0,90 и 0,99 от значений при статическом растяжении образцов из деформируемых алюминиевых и титановых сплавов, а также из углеродистых и легированных сталей. Рис.2.1. Зависимость медианы предела выносливости при переменном изгибе на базе 107 циклов от предела прочности при статическом растяжении для деформируемых алюминиевых сплавов: 1- оценка медианы предела выносливости; 2,3- нижняя граница медианы для вероятностей Р =0,9 и 0,99 соответственно. Рис.2.2. Зависимость медианы предела выносливости при переменном изгибе на базе 107 циклов от предела прочности при статическом растяжении для деформируемых титановых сплавов: 1- оценка медианы предела выносливости; 2- нижняя граница медианы для вероятностей Р =0.90 Рис.2.3. Зависимость медианы предела выносливости при переменном изгибе от предела прочности при статическом растяжении для углеродистых (а) и легированных (б) сталей: 1-3 – то же, что на рис.2.1.
В соответствии с ГОСТ 25.504-82 оценка предела выносливости при переменном изгибе может производиться также по следующим нелинейным зависимостям: а) стали (углеродистые и легированные) (2.12) б) высокопрочный чугун (В. Ч.) (2.13) в) ковкий чугун (К. Ч.) (2.14) г) серый чугун (С. Ч.) (2.15)
Дата добавления: 2013-12-13; Просмотров: 366; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |