Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Практические проблемы




Во-первых, необходимо иметь в виду, что память компьютера не бесконечна, так что каждый раз при оцифровке необходимо находить компромисс между качеством, напрямую зависящим от использованных при оцифровке параметров, и занимаемым оцифрованным сигналом объемом.

Во-вторых, частота дискретизации устанавливает верхнюю границу частот оцифрованного сигнала, а именно, максимальная частота спектральных составляющих равна половине частоты дискретизации сигнала. Чтобы получить полную информацию о звуке в частотной полосе до 22050 Гц, необходима дискретизация с частотой не менее 44100 Гц.

Существуют и другие проблемы, связанные с оцифровкой звука. Например, в цифровом звуке из-за дискретности информации по амплитуде оригинального сигнала появляются различные шумы и искажения. Так, например, джиттер (jitter) – шум, появляющийся в результате того, что осуществление выборки сигнала при дискретизации происходит не через абсолютно равные промежутки времени, а с какими-то отклонениями. То есть, если, дискретизация проводится с частотой 44.1 кГц, то отсчеты берутся не точно каждые 1/44100 секунды, а с небольшими отклонениями. А так как входной сигнал постоянно меняется, то такая ошибка приводит к «захвату» неверного уровня сигнала. В результате во время проигрывания оцифрованного сигнала может ощущаться некоторое дрожание и искажения. Появление джиттера является результатом не абсолютной стабильности аналогово-цифровых преобразователей. Для борьбы с этим явлением применяют высокостабильные тактовые генераторы. Еще одной неприятностью является шум дробления. При квантовании амплитуды сигнала происходит ее округление до ближайшего уровня. Такая погрешность вызывает ощущение «грязного» звучания. Стандартные параметры записи аудио компакт-дисков следующие: частота дискретизации – 44.1 кГц, уровень квантования – 16 бит. Такие параметры соответствуют 65536 (2) уровням квантования амплитуды при взятии ее значений 44100 раз в секунду.

На практике, процесс оцифровки (дискретизация и квантование сигнала) остается невидимым для пользователя – всю работу выполняют разнообразные программы, которые дают соответствующие команды драйверу звуковой карты. Любая программа, будь то встроенный WindowsRecorder или мощный звуковой редактор, способная осуществлять запись аналогового сигнала в компьютер, так или иначе оцифровывает сигнал с определенными параметрами, которые могут оказаться важными в последующей работе с записанным звуком, и именно по этой причине важно понять как происходит процесс оцифровки и какие факторы влияют на ее результаты.

Для преобразования дискретизованного сигнала в аналоговый вид, пригодный для обработки аналоговыми устройствами (усилителями и фильтрами) и последующего воспроизведения через акустические системы, служит цифроаналоговый преобразователь (ЦАП). Процесс преобразования представляет собой обратный процесс дискретизации: имея информацию о величине отсчетов (амплитуды сигнала) и беря определенное количество отсчетов в единицу времени, путем интерполирования происходит восстановление исходного сигнала (рисунок 4).

 

 

Рисунок 4 – Процесс цифроаналогового преобразования

 

В современном компьютере звук воспроизводится и записывается с помощью звуковой карты – подключаемой, либо встроенной в материнскую плату компьютера. Задача звуковой карты в компьютере – ввод и вывод аудио. Практически это означает, что звуковая карта является тем преобразователем, который переводит аналоговый звук в цифровой и обратно. Если описывать упрощенно, то работа звуковой карты может быть пояснена следующим образом. Предположим, что на вход звуковой карты подан аналоговый сигнал и карта включена программно. Сначала входной аналоговый сигнал попадает в аналоговый микшер, который занимается смешением сигналов и регулировкой громкости и баланса. Микшер необходим, в частности, для предоставления возможности пользователю управлять уровнями. Затем отрегулированный и сбалансированный сигнал попадает в аналогово-цифровой преобразователь, где сигнал дискретизуется и квантуется, в результате чего в компьютер по шине данных направляется бит-поток, который и представляет собой оцифрованный аудио сигнал. Вывод аудио информации почти аналогичен вводу, только происходит в обратную сторону. Поток данных, направленный в звуковую карту, преодолевает цифро-аналоговый преобразователь, который образует из чисел, описывающих амплитуду сигнала, электрический сигнал; полученный аналоговый сигнал может быть пропущен через любые аналоговые тракты для дальнейших преобразований, в том числе и для воспроизведения. Если звуковая карта оборудована интерфейсом для обмена цифровыми данными, то при работе с цифровым аудио никакие аналоговые блоки карты не задействуются.

Для хранения цифрового звука существует много различных способов. Оцифрованный звук являет собой набор значений амплитуды сигнала, взятых через определенные промежутки времени. Таким образом, во-первых, блок оцифрованной аудио информации можно записать в файл как есть – последовательностью чисел значений амплитуды. В этом случае существуют два способа хранения информации.

Первый способ (рисунок 5) – PCM (Pulse Code Modulation – импульсно-кодовая модуляция) – способ цифрового кодирования сигнала при помощи записи абсолютных значений амплитуд. Именно в таком виде записаны данные на всех аудио CD.

 

 

Рисунок 5 – Импульсно-кодовая модуляция

 

Второй способ (рисунок 6) – ADPCM (Adaptive Delta PCM – адаптивная относительная импульсно-кодовая модуляция) – запись значений сигнала не в абсолютных, а в относительных изменениях амплитуд.

 

 

 

Рисунок 6 – Адаптивная относительная импульсно-кодовая модуляция

 

Во-вторых, можно сжать или упростить данные так, чтобы они занимали меньший объем памяти, нежели будучи записанными как есть. Тут тоже имеются два пути.

Кодирование данных без потерь (lossless coding) – это способ кодирования аудио, который позволяет осуществлять стопроцентное восстановление данных из сжатого потока. К такому способу уплотнения данных прибегают в тех случаях, когда сохранение оригинального качества данных критично. Например, после сведения звука в студии звукозаписи, данные необходимо сохранить в архиве в оригинальном качестве для возможного последующего использования. Существующие сегодня алгоритмы кодирования без потерь позволяют сократить занимаемый данными объем на 20-50%, но при этом обеспечить стопроцентное восстановление оригинальных данных из полученных после сжатия. Подобные кодеры – это своего рода архиваторы данных (как ZIP, RAR и другие), только предназначенные для сжатия именно аудио.

Имеется и второй путь кодирования – кодирование данных с потерями (lossy coding). Цель такого кодирования – любыми способами добиться схожести звучания восстановленного сигнала с оригиналом при как можно меньшем объеме упакованных данных. Достигается это путем использования различных алгоритмов упрощающих оригинальный сигнал, удаляя из него слабослышимые детали, что приводит к тому, что декодированный сигнал фактически перестает быть идентичным оригиналу, а лишь, похоже звучит. Методов сжатия, а также программ, реализующих эти методы, существует много. Наиболее известными являются MPEG-1 Layer I,II,III (последним является MP3), MPEG-2 AAC (advanced audio coding), Ogg Vorbis, Windows Media Audio (WMA) и прочие. В среднем, коэффициент сжатия, обеспечиваемый такими кодерами, находится в пределах 10-14 раз. В основе всех lossy-кодеров лежит использование так называемой психоакустической модели, которая как раз и занимается упрощением оригинального сигнала. Говоря точнее, механизм подобных кодеров выполняет анализ кодируемого сигнала, в процессе которого определяются участки сигнала, в определенных частотных областях которых имеются неслышимые человеческому уху частоты, после чего происходит их удаление из оригинального сигнала. Таким образом, степень сжатия оригинального сигнала зависит от степени его упрощения, сильное сжатие достигается путем агрессивного упрощения, когда кодер считает ненужными множественные нюансы. Такое сжатие, естественно, приводит к сильной деградации качества, поскольку удалению могут подлежать не только незаметные, но и значимые детали звучания [8].

Современных lossy-кодеров существует достаточно много. Наиболее распространенный формат – MPEG-1 Layer III (MP3). Формат завоевал свою популярность совершенно заслуженно – это был первый распространенный кодек подобного рода, который достиг столь высокого уровня компрессии при отличном качестве звучания. Сегодня этому кодеку имеется множество альтернатив, но выбор остается за пользователем. Преимущества MP3 – широкая распространенность и достаточно высокое качество кодирования, которое объективно улучшается благодаря разработкам различных кодеров. Мощная альтернатива MP3 – кодек Microsoft Windows Media Audio (WMA). По различным тестам этот кодек показывает себя как MP3 на средних битрейтах, и, чаще, лучше MP3 на низких битрейтах. Ogg Vorbis (OGG) – совершенно свободный от лицензирования кодек, создаваемый независимыми разработчиками. Лучше MP3, но недостатком является малая распространенность, что может стать критическим аргументом при выборе кодека для длительного хранения аудио. Таким образом, MP3 пригоден больше для ведения аудио трансляций в интернет, а также для создания привью песен и музыки.

Говоря о способах хранения звука в цифровом виде нельзя не вспомнить и о носителях данных. Всем привычный аудио компакт-диск, появившийся в начале 80-х годов, широкое распространение получил именно в последние годы, что связано с сильным удешевлением носителя и приводов. А до этого носителями цифровых данных являлись кассеты с магнитной лентой, но не обычные, а специально предназначенные для так называемых DAT-магнитофонов. Эти магнитофоны использовались, в основном, в студиях звукозаписи. Преимущество таких магнитофонов было в том, что, не смотря на использование привычных носителей, данные на них хранились в цифровом виде и практически никаких потерь при чтении или записи на них не было, что очень важно при студийной обработке и хранении звука. Сегодня появилось большое количество различных носителей данных, кроме привычных всем компакт дисков. Носители совершенствуются и с каждым годом становятся более доступными и компактными. Это открывает большие возможности в области создания мобильных аудио проигрывателей.

С точки зрения обычного пользователя выгоды много – компактность современных носителей информации позволяет, например, перевести все диски и пластинки из своей коллекции в цифровое представление и сохранить на долгие годы на небольшом трехдюймовом винчестере или на десятке компакт дисков, можно воспользоваться специальным программным обеспечением и отреставрировать старые записи с бобин и пластинок, удалив из их звучания шумы и треск, можно также не просто скорректировать звучание, но и приукрасить его, добавить сочности, объемности, восстановить частоты. Помимо перечисленных манипуляций со звуком в домашних условиях, интернет тоже приходит на помощь аудио-любителю. Например, сеть позволяет людям обмениваться музыкой, прослушивать сотни тысяч различных интернет-радио станций, а также демонстрировать свое звуковое творчество публике, и для этого нужен всего лишь компьютер и интернет. И, наконец, в последнее время появилась огромная масса различной портативной цифровой аудио аппаратуры, возможности даже самого среднего представителя которой зачастую позволяют с легкостью взять с собой в дорогу коллекцию музыки, равную по длительности звучания десяткам часов.

С точки зрения профессионала цифровой звук открывает поистине необъятные возможности. Если раньше звуковые и радиостудии размещались на нескольких десятках квадратных метров, то теперь их может заменить хороший компьютер, который по возможностям превосходит десять таких студий вместе взятых, а по стоимости оказывается многократно дешевле одной. Это снимает многие финансовые барьеры и делает звукозапись более доступной и профессионалу и простому любителю. Современное программное обеспечение позволяет делать со звуком все что угодно. Раньше различные эффекты звучания достигались с помощью различных приспособлений, которые не всегда являли собой верх технической мысли. Сегодня, самые сложные и просто невообразимые раньше эффекты достигаются путем нажатия пары кнопок. С уверенностью можно сказать, что компактность, мобильность, колоссальная мощность и обеспечиваемое качество современной цифровой техники, предназначенной для обработки звука, уже сегодня почти полностью вытеснило из студий старую аналоговую аппаратуру.

У цифрового представления данных есть одно неоспоримое и очень важное преимущество – при правильных условиях хранения носителя данные на нем не искажаются с течением времени. Если магнитная лента со временем размагничивается и качество записи теряется, если пластинка царапается и к звучанию прибавляются щелчки и треск, то на компакт-диске или винчестере эффект старения отсутствует. Информация на всех типах компакт-дисков хранится покадрово и каждый кадр имеет заголовок, по которому его возможно идентифицировать. Однако различные типы CD имеют различную структуру и используют различные методы маркировки кадров. Поскольку компьютерные приводы CD-ROM рассчитаны на чтение в основном Data-CD, они часто не способны правильно ориентироваться на Audio CD, где способ маркировки кадров отличен от Data-CD. Это означает, что если при чтении Data-CD привод легко «ориентируется» на диске и никогда не перепутает кадры, то при чтении с аудио компакт диска привод не может ориентироваться четко, что при появлении, скажем, царапины или пыли может привести к чтению неправильного кадра и, как следствие, скачку или треску звучания. Эта же проблема является причиной еще одного неприятного эффекта: копирование информации с Audio CD вызывает проблемы даже при работе с полностью сохранными дисками вследствие того, что правильное ориентирование на диске полностью зависит от считывающего привода и не может быть четко проконтролировано программным путем.

 




Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 396; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.