Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Питання для узагальнення

Питання для узагальнення

– Які логічні операції існують над висловленнями?

4. Предикат (висловлю вальні форми)

У математиці часто розглядають речення, які містять одну або декілька змінних.

Наприклад: х > 3; х2 + 5 х + 6 = 0; х + у = 7. Відносно цих речень не має смислу питання: істинні вони чи хибні, бо при одних значеннях змінної вони перетворюються в істинні висловлення, а при інших у хибні. Речення такого виду називаються предикатами або висловлювальними формами. Слово «предикат» у перекладі з латинської мови означає «присудок». Позначимо дані речення – h (х), f (х). Це висловлювальні форми від однієї змінної, або одномісна висловлювальна форма. Предикат «х = у» – є двомісним предикатом: р (х; у).

Висловлювальна форма (предикат) – це речення з однією або двома змінними, яке перетворюється у висловлення при підстановці в нього конкретних значень змінної. Предикати є одномісні, двомісні і т.д. (Н: «х > 3» – простий, одномісний предикат (замість х підставимо число і предикат перетвориться на висловлення), «х + у = 10» - це простий, двомісний предикат. «х > 3 і х – двозначне число» – складений одномісний предикат.)

Прикладами предикатів в шкільному курсі математики є: рівняння з однією або декількома змінними, нерівності зі змінними, системи рівнянь або нерівностей тощо. Найпоширеніші з предикатів в математиці мають свої позначення. Наприклад: «х дорівнює у» позначається «х = у»; «х менше або дорівнює у» позначається «х ≤ у»; «х паралельно у» позначається «х || у».

Відносно висловлювальної форми виникає питання: при яких значеннях змінної ця форма перетворюється в істинне або хибне висловлення. Якщо це рівняння, нерівність, система рівнянь чи нерівностей, то для відповіді на це питання їх треба розв’язати, тобто знайти їх множини розв’язків.

Наприклад: знайти множину істинності предикатів: 2 х = 10; х = 25; > 3.

Для відповіді на це запитання необхідно розв’язати дані рівняння, нерівність та вказати при яких значеннях х вони перетворюються у правильні числові рівності або правильну числову нерівність, тобто у істинні висловлення. Множинами істинності даних предикатів є множини їх розв’язків.

Отже, висловлювальна форма (предикат) – це речення з однією або двома змінними, яке перетворюється у висловлення при підстановці в нього конкретних значень змінної. Прикладами предикатів в шкільному курсі математики є: рівняння з однією або декількома змінними, нерівності зі змінними, системи рівнянь або нерівностей тощо.

 

– Що називається предикатом?

– Що означає слово «предикат» у перекладі з латинської мови?

– Які бувають предикати?

 

5. Квантори. Структура висловлень, що містять слова «всі», «деякі»

Часто у висловленнях використовуються слова «всі», «деякі», «будь-які», «існує», «хоч би один», «кожен», «знайдеться» тощо.

Наприклад: «Всі числа 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – одноцифрові», «Деякі з одноцифрових чисел діляться на 3», «Існують рівносторонні трикутники» тощо. Відносно цих речень можна сказати, що вони істинні або хибні, а тому ці речення є висловленнями. Якщо ж з даних речень забрати слова «всі», «деякі», «існують», то вони перетворюються у предикати.

Слова «всі», «деякі» тощо називаються кванторами. Слово «квантор» латинського походження і означає «скільки», тобто квантор показує, про скільки об’єктів (про всі чи про деякі) іде мова у даному реченні.

Предикат перетворюється у висловлення при підстановці замість змінної конкретного значення. Можна це зробити при «навішуванні» кванторів – загальності та існування.

Вираз «для всякого х» («для любого х», «для кожного х», «для будь-якого х») називається квантором загальності і позначається.

Слова «існує», «деякі», «знайдеться», «хоч би один» називаються квантором існування і позначається.

Отже, якщо перед одномісним предикатом поставити квантор, то одержимо висловлення.

Приклади: 1. Для любого числа х вираз 2х ділиться на 2. (і)

2. Всі квадрати – прямокутники. (і)

3. Деякі непарні числа діляться на 3. (і)

Істинність висловлень з кванторами встановити можна так:

1. Квантор загальності перетворює предикат в істинне висловлення, якщо можна довести істинність (повна індукція), або довести хибність конкретними прикладами.

Приклад: 1. Для будь-якого числа від 0 до 9, нерівність буде правильною х + 1 > х. Істинність можна довести перебравши усі числа.

2. Для будь-якого дійсного числа х, нерівність х > 3 правильна. Хибність можна довести контр прикладом 2 > 3.

2. Квантор існування перетворює предикат в істинне висловлення, якщо можна навести конкретний приклад або хибність довести повною індукцією.

Приклад: Існують натуральні числа кратні 5.(Це такі числа як 5, 25, 15…).

Правила побудови заперечення висловлень, які містять квантори:

Якщо висловлення хибне, то його заперечення повинно бути істинним і навпаки. Заперечення висловлень з кванторами можна побудувати так:

1) Можна поставити слова спереду («невірно що» …).

 

Приклад:

«Для будь-якого натурального числа х, справжнюється нерівність х + 1 > х» - (і).

, Р(х) – (і).

«Невірно, що для будь-якого натурального числа х, справжнюється нерівність

х + 1 > х» - (х).

 

2) Квантор загальності (існування) заміняється квантором існування (загальності), а речення після квантора заміняється його запереченням.

Приклад:

«Існує таке натуральне число, що справжнюється нерівність х + 1 < х» - (х).

, Р(х) – (х).

Отже, слова «всі», «деякі» тощо називаються кванторами. Слово «квантор» латинського походження і означає «скільки», тобто квантор показує, про скільки об’єктів (про всі чи про деякі) іде мова у даному реченні.

Розрізняють квантори загальності та існування. Квантори загальності позначають знаком (перевернута перша буква англійського слова All – всі), а квантори існування знаком (перевернута перша буква англійського слова Exists – існує).

Квантори загальності () Квантори існування ()
всі кожен будь-який довільний існує хоч би один деякі знайдеться

Форму висловлення з предикатом мають багато математичних речень, наприклад, «всі ромби є паралелограмами»; «деякі непарні числа діляться на 5»; «сума кутів будь-якого трикутника дорівнює 180°».

 

ІІІ. Заключна частина

<== предыдущая лекция | следующая лекция ==>
Заперечення висловлення | Повідомлення домашнього завдання
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 887; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.