КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
В установившемся режиме
Анализ точности цифровых систем управления Пусть цифровая система управления служит для воспроизведения задающего воздействия v (t). При этом в идеальном случае надо обеспечить равенство управляемой величины у (t) и задающего воздействия. Практически реальная система решает эту задачу с ошибкой воспроизведения . (86) Для того чтобы оценить, насколько хорошо цифровая система воспроизводит задающее воздействие, надо найти величину этой ошибки . Однако в рамках математической модели цифровой системы управления, ориентированной на дискретный фильтр, можно вычислить лишь управляемую последовательность , т.е. определить дискретные значения управляемой величины. Поэтому для оценки свойств системы с точки зрения воспроизведения сигнала v (t) приходится довольствоваться последовательностью ошибки , (87) где , - задающая последовательность. Очевидно, что последовательность ошибки не дает информацию о том, как изменяется ошибка воспроизведения в промежутке между моментами дискретизации, а следовательно, не дает полного представления об этой ошибке. Все же в тех случаях, когда период дискретизации является небольшим по сравнению с инерционностью объекта управления, управляемая величина изменяется плавно и путем интерполяции последовательности ошибки можно получить кривую , которая будет достаточно точной оценкой ошибки . Однако в любом случае надо помнить, что цель управления непрерывным объектом заключается в обеспечений малости ошибки в любой момент времени, а не только в дискретные моменты . Если цифровая система является устойчивой, то последовательность ошибки , (88) состоит из переходной составляющей , которая с течением времени затухает, т.е. и установившейся составляющей , которая служит для оценки точности работы цифровой системы в установившемся режиме и называется установившейся ошибкой воспроизведения. Разумеется, на самом деле установившейся ошибкой является установившаяся составлявшая ошибки , а не последовательность . Рассмотрим метод вычисления установившейся ошибка воспроизведения , полагая, что другие внешние воздействия, а именно шум измерения и возмущающее воздействие, отсутствуют.
3. 25. Метод, базирующийся на теореме о конечном значении Z- преобразования. Этот метод позволяет находить установившуюся ошибку при задающих воздействиях в виде степенной функции порядка l: , , (89) При таком воздействии последовательность ошибки стремится к пределу, т.е. , так что установившаяся ошибка цифровой системы представляет собой последовательность равных между собой чисел (постоянную последовательность). Используя теорему о конечном значении, находим выражение , (90) дающее возможность оценить установившуюся ошибку с помощью Z-преобразования , последовательности ошибки. Ограничимся рассмотрением цифровой системы с единичной обратной связью, для которой , (91) где , - Z-преобразование задающей последовательности. Представляя передаточную функцию разомкнутой системы в стандартной форме, т. е. в виде , , где - число дискретных интеграторов (диграторов), k - безразмерный коэффициент усиления, из (91) имеем . (92) Заметим, что , где - размерный коэффициент усиления. Подставлял (92) в (90), получаем формулу для установившегося значения ошибки . (93) Используем (93) для двух частных случаев: а) пусть l= 0, так что в соответствие с (88) задающее воздействие является постоянным сигналом при , т. е. , . При этом задающая последовательность , а ее Z-преобразование . Следовательно, формула (93) в этом случае принимает вид: . (93) Установившаяся ошибка при постоянном задающем воздействии называется статической ошибкой и обозначается . Если , то . Система, для которой статическая ошибка отлична от нуля, называется статической. Если , то . Система, обеспечивающая безошибочное воспроизведение постоянного задающего воздействия, т.е. обеспечивающая равенство нуля статической ошибки, называется астатической (нестатической). Таким образом, передаточная функция астатической цифровой разомкнутой системы включает в себя по меньшей мере один дигратор. Число таких диграторов определяет порядок астатизма цифровой системы с единичной: обратной связью. Если , то система обладает астатизмом первого порядка; если , то система имеет астатизм второго порядка и т.д.;
б) пусть l= 1, при этом согласно(88) задающее воздействие представляет собой сигнал, изменяющийся с постоянной скоростью , описываемый выражением , . Этому сигналу соответствует задающая последовательность , Z-преобразование которой имеет вид . В этом случае установившаяся ошибка (93), называемая скоростной ошибкой или ошибкой по скорости, определяется как . (94) Если система статическая (), то . Для системы с астатизмом первого порядка () скоростная ошибка . обратно пропорциональна размерному коэффициенту усиления и не зависит от величины периода дискретизации Т..Если же система обладает астатизмом по крайней мере второго порядка (), ошибка по скорости равна нулю. В общем случае, когда задающее воздействие описывается степенной функцией порядка l, с помощью (92) можно установить, что Число интеграторов в разомкнутой системе определяет класс задающих воздействий, для которых нет установившейся ошибки. Если разомкнутая система имеет интеграторов, то ошибка в установившемся режиме будет равна нулю (при условии, что система асимптотически устойчива) для задающих воздействий, которые являются многочленами от i порядка, меньшего или равного (v-1). Пример. Рассмотрим разомкнутую систему . При этом z- преобразование ошибки замкнутой системы (рис. 25) определяется как . Предположим, что v - единичная ступенчатая функция. Так как замкнутая система устойчива, можно применить теорему о конечном значении, чтобы показать, что статическая ошибка равна нулю. Это легко сделать, положив z= 1. Можно поступить иначе и воспользоваться тем, что разомкнутая система содержит один интегратор, т.е. полюс в точке +1. Если v - сигнал, изменяющийся с постоянной скоростью, тоустановившаяся ошибка определяется соотношением: .
3. 26. Аналитический метод синтеза (метод размещения полюсов и нулей системы), основанный на моделях типа "вход-выход" Основная проблема синтеза цифровой САУ заключается в определении закона управления, обеспечивающего соответствующие требования к статическим и динамическим свойствам замкнутой системы. Как правило, эти требования формулируются заданием соответствующих ограничений на характер переходного процесса (введением допустимых значений перерегулирования, времени переходного процесса, установившейся ошибки при типовых входных воздействиях и т.п.). В методических указаниях к курсовой работе по ТАУ (2291) дана методика определения желаемой передаточной функции цифровой САУ, гарантирующей решение проблемы синтеза с точки зрения заданной точности воспроизведения задающего воздействия и допустимого поведения проектируемой системы в переходном режиме. В сущности, выбор желаемой передаточной функции является фиксацией (размещением) на плоскости Z полюсов и нулей системы, удовлетворяющей предъявляемым к ней требованиям. Нули и полюсы объекта, управляемого от ЦВМ, разумеется, отличаются от нулей и полюсов желаемой передаточной функции. Поэтому надо определить такой закон управления, который как бы заменял нули и полюсы объекта управления на желаемые нули и полюсы. В рассматриваемом случае задача аналитического синтеза ставится следующим образом.
Дата добавления: 2014-01-04; Просмотров: 1964; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |