Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Якобиан и его геометрический смысл

Рассмотрим общий случай замены переменных в двойном интеграле. Пусть в плоскости О ху дана область D, ограниченная линией L. Предположим, что х и у являются однозначными и непрерывно дифференцируемыми функциями новых переменных u и v:

x = φ(u, v), y = ψ(u, v). (25.8)

Рассмотрим прямоугольную систему координат О uv, точка Р΄(u, v) которой соответствует точке Р(х, у) из области D. Все такие точки образуют в плоскости О uv область D΄, ограниченную линией L΄. Можно сказать, что формулы (9.6) устанавливают взаимно однозначное соответствие между точками областей D и D΄. При этом линиям u = const и

v = const в плоскости О uv будут соответствовать некоторые линии в плоскости О ху.

v y u u+Δu

•P

v+Δv v+Δv

v •P′

v

O u u+Δu u O x

Рис. 4.

Рассмотрим в плоскости О uv прямоугольную площадку Δ , ограниченную прямыми u = const, u+Δu = const, v = const и v+Δv = const. Ей будет соответствовать криволинейная площадка Δ S в плоскости О ху (рис.4). Площади рассматриваемых площадок тоже будем обозначать Δ и Δ S. При этом Δ = Δu Δv. Найдем площадь Δ S. Обозначим вершины этого криволинейного четырехугольника Р1, Р2, Р3, Р4, где

P1(x1, y1), x1 = φ(u, v), y1 = ψ(u, v);

P2(x2, y2), x2 = φ(u+Δu, v), y2 = ψ(u+Δu, v);

P3(x3, y3), x3 = φ(u+Δu, v+Δv), y3 = ψ(u+Δu, v+Δv);

P4(x4, y4), x4 = φ(u, v+Δv), y4 = ψ(u, v+Δv).

Заменим малые приращения Δ u и Δ v соответствующими дифференциалами. Тогда

При этом четырехугольник Р1 Р2 Р3 Р4 можно считать параллелограммом и определить его площадь по формуле из аналитической геометрии:

(25.9)

Определение. Определитель называется функциональным определителем или якобианом функций φ(х, у) и ψ(х, у).

Переходя к пределу при в равенстве (25.9), получим геометрический смысл якобиана:

, (25.10)

то есть модуль якобиана есть предел отношения площадей бесконечно малых площадок Δ S и Δ S ΄.

Замечание. Аналогичным образом можно определить понятие якобиана и его геометрический смысл для п -мерного пространства: если x1 = φ1(u1, u2,…,un), x2 = φ2(u1, u2,…,un),…, xn = φ(u1, u2,…, un), то

(25.11)

При этом модуль якобиана дает предел отношения «объемов» малых областей пространств х1, х2,…, хп и u1, u2,…, un.

<== предыдущая лекция | следующая лекция ==>
Криволинейные системы координат в трехмерном пространстве | Замена переменных в кратных интегралах
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 977; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.