КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Дивергенция векторного поля. Продолжим изучение характеристик векторных полей
Продолжим изучение характеристик векторных полей.
Определение. Дивергенцией векторного поля A = { Ax, Ay, Az }, где Ax, Ay, Az – функции от x, y, z, называется . (28/1.3) Замечание 1. Из определения видно, что дивергенция является скалярной функцией. Замечание 2. Слово «дивергенция» означает «расходимость», так как дивергенция харак-теризует плотность источников данного векторного поля в рассматриваемой точке.
Рассмотрим формулу Гаусса-Остроградского с учетом определений потока и дивергенции векторного поля. Тогда в левой части формулы (28/1.1) стоит тройной интеграл по объему V от дивергенции векторного поля { P, Q, R }, а в правой – поток этого вектора через ограни-чивающую тело поверхность S: (28/1.4) Докажем, что величина дивергенции в данной точке не зависит от выбора системы коор-динат. Рассмотрим некоторую точку М, которую окружает трехмерная область V, ограни-ченная поверхностью S. Разделим обе части формулы (28/1.4) на V и перейдем к пределу при стягивании тела V к точке М. Получим: . (28/1.5) Это равенство можно считать инвариантным определением дивергенции, то есть определением, не зависящим от выбора координатной системы.
Дата добавления: 2014-01-04; Просмотров: 440; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |