Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Длина пути движения воды с пониженной скоростью выбирается с учетом всплывания пузырьков и скопления газов для последующего их удаления

Проследим за состоянием газов и образованием их скоплений в вертикальных системах водяного отопления.

Направление движения пузырьков свободного воздуха в воде зависит от соотношения воздействующих на них сил — подъемной архимедовой силы и силы сопротивления движению.

Рассмотрим состояние идеального воздушного пузырька — шарика диаметром d в потоке воды, движущемся сверху вниз. Подъемная сила Р, Н, действующая на пузырек, направлена вверх

(5.5)

где V — объем пузырька; γвод и γвоз — удельный вес, Н/м3, соот­ветственно воды и воздуха.

При движении со скоростью v в потоке воды, обладающем скоростью w, пузырек испытывает силу сопротивления всплыванию

(5,6)

где сx — коэффициент сопротивления.

При P=R скорость v=0 и пузырек находится в потоке во взвешенном состоянии. Скорость w свободного потока, не ограниченного стенками трубы, при которой пузырек газа «витает» в воде, носит название скорости витания, или критической скорости движения воды.

При P>R пузырек «всплывает» против течения воды и перемещается в верхние части системы.

При P<.R, т. е. при скорости движения потока, превышающей критическую, пузырек газа уносится потоком воды и в системе отопления перемещается в нижние ее части.

Критическая скорость потока воды, связанная с обычными геометрическими размерами воздушных скоплений в системах водяного отопления, составляет в вертикальных трубах 0,20—0,25 м/с, в наклонных и горизонтальных трубах 0,10—0,15 м/с. Скорость всплывания пузырьков в воде не превышает скорости витания.

Газы переходят из растворенного состояния в свободное по мере уменьшения гидростатического давления: в главном стояке с горячен водой при верхней разводке, в отдельных стояках — при нижней. Свободные пузырьки и скопления газов движутся по течению или против него в зависимости от скорости потока воды и уклона труб. Газы собираются в высших точках системы, а при высокой скорости движения захватываются потоком и по мере понижения температуры и повышения гидростатического давления в нижних частях системы вновь абсорбируются водой.

Установим теперь совокупность мероприятий для сбора и удаления газов из систем водяного отопления.

В системах с верхней разводкой необходимо обеспечивать движение свободных газов к точкам их сбора. Точки сбора газов (и удаления их в атмосферу) следует назначать в наиболее высоко расположенных местах систем. Скорость движения воды в точках сбора должна быть менее 0,10 м/с;

Конкретно магистралям придают определенный уклон в желательном направлении и устанавливают проточные воздухосборники (рис. 5.17)—вертикальные или горизонтальные.

Минимально необходимый внутренний диаметр dв, мм, воздухосборника определяют исходя из скорости движения воды в нем менее 0,10 м/с по формуле

dв=2G05, (5.7)

где G — расход воды, кг/ч.

Выбранный диаметр воздухосборника должен превышать диаметр магистрали по крайней мере в 2 раза. Длину горизонтального воздухосборника делают в 2—2,5 раза больше его диаметра. Из воздухосборников газы удаляются в атмосферу периодически при помощи ручных спускных кранов или автоматических воздухоотводчиков (рис. 5.18).

В большинстве известных конструкций автоматических воздухоотводчиков (так называемых вантузов) поплавково-клапанного типа используются внутреннее гидростатическое давление для закрывания клапана (прижимания золотника клапана к седлу воздушной трубки) и масса поплавка для его открывания


Рис. 5. 17. Проточные воздухосборники

 
 

а — вертикальный на главном стояке; б — горизонтальный на магистрали; 1 — главный стояк 2 - магистрали; 3 - труба Ду

отоп­ления с нижней разводкой

а, б, в — через воздушный кран 1; г, д — через воздушные трубы 2 и 3 с петлей 5 и непроточный воздухосборник 4; е — через открытый расширительный бак 6; ж — деталь ручного крана о от­вертываемым игольчатым штоком; I—1 — верхний уровень воды в стояках и баке

На рис. 5.18, в показан воздухоотводчик с пружинным воздуховыпускным клапаном. Если в пространстве между корпусом и поплавком собирается воздух, то поплавок опускается. При этом сжимается пружина в клапане и для воздуха открывается выход в атмосферу. Поступающая при этом в корпус вода поднимает поплавок и с помощью пружины клапан закрывается.

В системах с «опрокинутой» циркуляцией воды и верхним расположением обратной магистрали, в гравитационной системе с верхней разводкой для отделения и удаления газов используют расширительные баки с открытой переливной трубой.

В системах водяного отопления с нижней разводкой обеих магистралей газы, концентрирующиеся в колончатых радиаторах или в греющих трубах конвекторов, установленных на верхнем этаже, удаляют в атмосферу периодически при помощи ручных и автоматических воздушных кранов 1 (рис. 5.19, а) или централизованно через специальные воздушные трубы 2 и 3 (рис. 5.19, г).

Распространен ручной бессальниковый воздушный: кран Dyl5 с поворотным игольчатым штоком (рис. 5.19, ж). Кран ввертывают в пробку радиаторов или тройник на подводке к конвекторам. Однако более совершенны автоматические воздушные краны, работа которых основана на свойстве сухого материала пропускать воздух и задерживать его при увлажнении.

При централизованном удалении газов воздушные трубы стояков соединяются горизонтальной воздушной линией (рис. 5.19,г) с петлей для устранения циркуляции воды в воздушной линии (рис. 5.19, д, е). Для периодического выпуска воздуха в воздушной петле помещают вертикальный воздухосборник со спускным краном (рис. 5.18, б и 5.19, д). Для непрерывного удаления воздуха воздушную петлю присоединяют к соединительной трубе открытого расширительного бака (рис. 5.19, е).

Особенно важны мероприятия по сбору и удалению воздушных скоплений при «подпитке» систем водопроводной водой. В этом случае при нижнем расположении магистралей колончатые радиаторы на верхнем этаже присоединяют по схеме снизу—вниз (см. рис. 5.19, а), конвекторы снабжают воздушными кранами или применяют централизованное удаление воздуха (см. рис. 5.19, г).

При подпитке систем отопления деаэрированной водой небольшие скопления газов в трубах и приборах на верхнем этаже устраняются сами по себе, если предусматривать повышение скорости движения воды в них до 0,30 м/с и более. Уносимые при этом газы будут абсорбироваться водой в нижней части стояков — в зоне повышенного гидростатического давления. Это вполне осуществимо в вертикальных однотрубных системах, и тогда возможно одностороннее — по унифицированной схеме — присоединение труб к отопительным приборам на верхнем этаже здания (см. рис. 5.19, б).

Поглощение воздуха водой протекает сравнительно быстро в отопительных приборах на нижних этажах зданий, где растворимость воздуха возрастает благодаря увеличению гидростатического давления. По наблюдениям процесс обезвоздушивания радиаторов, присоединенных к трубам по схеме снизу—вниз (см. рис. 5.19, а), при значительном гидростатическом давлении практически заканчивается в течение 2—3 сут без открывания воздушных кранов. Поэтому при обеспечении достаточной растворимости газов трубы можно присоединять к приборам по схеме, изображенной на рис. 5.19, в, способствующей повышению плотности теплового потока приборов.

<== предыдущая лекция | следующая лекция ==>
В вертикальных трубах пузырьки газа могут всплывать, находиться во взвешенном состоянии и, наконец, увлекаться поток ом воды вниз | В паровых системах низкого давления воздух удаляют в атмосферу через специальные воздушные трубы
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 666; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.