Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Смешение воды может осуществляться и без местного насоса. В этом случае смесительная установка оборудуется водоструйным элеватором

Сопло; 2 — камера всасывания; 3 — смесительный конус; 4 — горловина; 5 — диффузор

Смесительный насос; 2 и 3— давление в наружных соответственно подающем и обратном теплопроводах; А—точка смешения; Б — точка деления потоков воды

Например, при температуре воды t1=150°, tг==95° и tо=70 °С коэффициент смешения смесительной установки u=(150—95): (95—70)=2,2. Это означает, что на каждую единицу массы высокотемпературной воды должно подме­шиваться 2,2 единицы охлажденной воды.

Смешение происходит в результате совместного действия двух аппаратов — циркуляционного сетевого насоса на тепловой станции и смесительной установки (насоса или водоструйного элеватора) в отапливаемом здании.

Смесительный насос можно включать в перемычку Б—А между обратной и подающей магистралями (рис. 6.10, a) и в обратную (рис. 6.10, б) или подающую магистраль (рис. 6.10, в) системы отопления. На рисунке показаны регуляторы температуры 2 и расхода воды 3 для местного качественно-количественного регулирования системы отопления в течение отопительного сезона.

Смесительный насос, включенный в перемычку, подает в точку смешения А воду, повышая ее давление до давления высокотемпературной воды. Таким образом, в точку смешения поступают два потока воды в результате действия двух различных насосов — сетевого и местного, включенных параллельно. Насос на перемычке действует в благоприятных температурных условиях (при температуре to<70 °С) и перемещает меньшее количество воды, чем насос на обратной или подающей магистрали (Go<Gc),

Gн=Go, где Go=Gс-G1 (6.10)

Насос на перемычке, обеспечивая смешение, не влияет на величину циркуляционного давления для местной системы отопления, которая определяется разностью давления в наружных теплопроводах. Изменение циркуляционного давления в системе и в перемычке Б—А между магистралями в этом случае схематично изображено на рис. 6.11, а. Показано постепенное (условно равномерное) понижение давления в направлении движения воды в подающей (наклонная линия Г1) и обратной (наклонная линия Т2) магистралях, падение давления в стояке (вер­тикальная сплошная линия) и возрастание под действием насоса в перемычке (пунктирная линия) до давления в точке А.

Смесительный насос включают непосредственно в ма­гистрали системы отопления, когда разность давления в наружных теплопроводах недостаточна для нормальной циркуляции воды в системе. Насос при этом, обеспечивая помимо смешения необходимую циркуляцию воды, стано­вится циркуляционно-смесительным.

Насос на обратной или подающей магистрали (см. рис. 6.10, б, в) перемещает всю воду, циркулирующую в системе [Gн=Gс по выражению (6.3)], при температуре to или tг. Включение насоса в общую магистраль системы отопления позволяет увеличить циркуляционное давление в ней до необходимой величины независимо от разности давления в наружных теплопроводах. Условия смешения воды аналогичны: в точку А (см. рис. 6.10) поступают два потока воды (G1 и Go) также в результате действия двух насосов — сетевого и местного — с той лишь разницей, что насосы включаются последовательно (по направлению движения воды).

Рис. 6.12 Принципиальная схема во­доструйного элеватора

Изменение циркуляционного давления при действии системы отопления с циркуляционно-смесительным насосом, включенным в общую обратную магистраль, показано на рис. 6.11, б. Как видно, давление в системе ниже давления в наружных теплопроводах. Данная схема может быть выбрана после проверки, не вызовет ли понижение давления вскипания воды или подсоса воздуха в отдельных местах системы. Насос повышает давление воды до давления в наружном обратном теплопроводе. Давление в точке смешения А должно быть ниже давления в точке Б (устанавливается с помощью регулятора температуры — см. рис. 6.10).

Насос, включаемый в общую подающую магистраль, предназначают не только для смешения и циркуляции, но и для подъема воды в верхнюю часть системы отопления высокого здания. Смесительный насос становится также циркуляционно-повысительным. Изменение гидравлического давления в этом случае изображено на рис. 6. 11, в,

Смесительных насосов, как и циркуляционных, устанавливают два с параллельным включением в теплопровод (см. рис. 6.9); действует всегда один из насосов при другом резервном.

Водоструйный элеватор получил распространение как дешевый, простой и надежный в эксплуатации аппарат. Он сконструирован так, что подсасывает охлажденную воду для смешения с высокотемпературной водой и передает часть давления, создаваемого сетевым насосом на тепловой станции, в систему отопления для обеспечения циркуляции воды,

Водоструйный элеватор (рис. 6.12) состоит из конусообразного сопла, через которое со значительной скоростью протекает высокотемпературная вода при температуре t1 в количестве G1; камеры всасывания, куда поступает охлажденная вода при температуре tо в количестве Go; смесительного конуса и горловины, где происходят смешение и выравнивание скорости движения воды, и диффузора.

Вокруг струи воды, вытекающей из отверстия сопла с высокой скоростью, создается зона пониженного давления, благодаря чему охлажденная вода перемещается из обратной магистрали системы (см. рис. 6.13) в камеру вса­сывания. В горловине струя смешанной воды двигается с меньшей, чем в отверстии сопла, но еще со значительной скоростью. В диффузоре при постепенном увеличении площади поперечного сечения по его длине гидродинамическое (скоростное) давление падает, а гидростатическое — нарастает. За счет разности гидростатического давления в конце диффузора и в камере всасывания элеватора создается циркуляционное давление, необходимое для циркуляции воды в системе отопления.

Одним из недостатков водоструйного элеватора является низкий КПД. Достигая наивысшего значения (43%) при малом коэффициенте смешения и особой форме камеры всасывания (исследования проф. П. Н. Каменева), гидростатический КПД стандартного элеватора практически при высокотемпературной воде близок к 10%. Следовательно, в этом случае разность давления в наружных теплопроводах на вводе их в здание должна не менее чем в 10 раз превышать циркуляционное давление ∆Рн, необходимое для циркуляции в системе отопления. Это условие значительно ограничивает давление, передаваемое водоструйным элеватором в систему из наружной тепловой сети, и вынуждает пользоваться формулой (6.8).

<== предыдущая лекция | следующая лекция ==>
Смесительная установка системы водяного отопления | Лекция 7
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 689; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.