КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Достаточные признаки сходимости положительных рядов
Необходимое и достаточное условие сходимости положительного ряда: Для того чтобы ряд с неотрицательными членами сходился необходимо и достаточно, чтобы последовательность частичных сумм этого ряда была ограничена. Признаки сравнения: · (сходимости) - Пусть даны два ряда с неотрицательными членами и и для всех n выполняется неравенство . Тогда если ряд сходится, то ряд тоже сходится; · (расходимости) - Пусть даны два ряда с неотрицательными членами и и для всех n выполняется неравенство . Тогда если ряд расходится, то ряд тоже расходится. Все теоремы сведём в таблицу:
Признак Даламбера: Пусть дан ряд с положительными членами и существует . · если q <1 – ряд сходится; · если q >1 – ряд расходится; · если q =1 – ряд может и сходиться и расходиться, то есть данный признак неприменим. Признак Коши: Пусть дан ряд с положительными членами и существует . · если q <1 – ряд сходится; · если q >1 – ряд расходится; · если q =1 – ряд может и сходиться и расходиться, то есть данный признак неприменим. Интегральный признак: Пусть дан ряд с положительными членами, являющимися значениями некоторой функции f (x), непрерывной и убывающей на полуинтервале [1; +¥). Тогда ряд будет сходиться в том случае, если сходится несобственный интеграл: и расходиться в случае его расходимости.
Обобщённый гармонический ряд: : · сходится при a>1; · расходится при 0<a£1.
Задание 3. Исследовать ряд на сходимость, используя признаки сравнения: Задание 4. Исследовать ряд на сходимость по признаку Даламбера:
Задание 5. Исследовать ряд на сходимость по признаку Коши:
Дата добавления: 2014-01-04; Просмотров: 433; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |