Ряд (1) (с членами произвольных знаков) заведомо сходится, если сходится положительный ряд (2): составленный из абсолютных значений членов данного ряда.
Остаток данного ряда (1) по абсолютному значению не превосходит соответствующего остатка ряда (2).
Сумма S данного ряда(1) по абсолютному значению не превосходит суммы S' ряда (2). |S|£S'. Равенство имеет место только тогда, когда все члены ряда (1) — одного знака.
Замечание 1. Ряд (1) может сходиться и тогда, когда ряд (2) расходится.
Определение 1. Ряд называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных значений его членов (в этом случае сходится и данный ряд).
Определение 2. Ряд называется условно сходящимся, если он сходится, но ряд, составленный из абсолютных значений его членов, расходится.
Замечание 2. Сходящийся ряд, у которого все члены положительны или все члены отрицательны, - абсолютно сходящийся.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление