Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теорема Гаусса в интегральной форме




 

Формулируется тремя способами:

1. Поток вектора электрического смещения через любую замкнутую поверхность, окружающую некоторый объем, равен алгебраической сумме свободных зарядов, находящихся внутри этой поверхности

(15.11)

Вектор – это такая характеристика поля, которая не зависит от диэлектрических свойств среды.

2. Так как , то теорему Гаусса для однородной и изотропной среды можно записать:

(15.12)

Вектор – это характеристика поля, которая зависит от диэлектрических свойств среды.

3. Поток вектора через любую замкнутую поверхность создается не только суммой свободных зарядов, но и суммой связанных зарядов

. (15.13)

Теорему Гаусса можно использовать для нахождения напряженности или электрического смещения в какой-либо точке поля, если через эту точку можно провести замкнутую поверхность таким образом, что все ее точки будут в симметричных (одинаковых условиях по отношению к заряду, находящемуся внутри замкнутой поверхности).

Такой поверхностью являются обычно сфера (если заряд точечный), или боковая поверхность цилиндра (если заряд линейный).

В качестве примера использования теоремы Гаусса найдем напряженность поля, создаваемую точечным зарядом в точке, удаленной на расстояние r от заряда. С этой целью через заданную точку проведем сферическую поверхность радиусом r, полагая, что заряд находится в центре сферы (рис. 15.3).

 
 

 


Рис. 15.3. К определению поля точечного заряда

 

Элемент поверхности сферы перпендикулярен поверхности сферы и направлен в сторону внешней нормали, т.е. векторы и в каждой точке сферы совпадают по направлению

(15.14)

 

Напряженность поля:

Откуда

(15.15)

где C – постоянная интегрирования.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 394; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.