КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Опасное сечение — это поперечное сечение, в котором действуют наибольшие внутренние усилия
А где будет располагаться опасное сечение в более сложном случае нагружения (рис. 1.11, б)? Сразу дать правильный ответ достаточно трудно, так как сосредоточенный изгибающий момент и распределенная нагрузка изгибают балку вниз, а сосредоточенная сила — вверх, при этом величины моментов от каждого вида нагрузки различны.
а) б)
Рис. 1.11
Поэтому для сложных случаев нагружения необходимо знать закон изменения по длине балки изгибающего момента или другого внутреннего усилия (например, продольной силы , поперечной силы или крутящего момента ). Этот закон можно изобразить с помощью специальных графиков, называемых эпюрами. Эпюра — это график, изображающий закон изменения внутреннего усилия по длине стержня. В случаях растяжения — сжатия (рис. 1.12, а) или кручения (рис. 1.12, б) ординаты эпюр продольных сил или крутящих моментов также показывают их величины в соответствующих поперечных сечениях. Любое внутреннее усилие определяется по внешним нагрузкам при помощи метода сечений. Каждая эпюра на разных участках имеет различные знаки. Рис. 1.12
Правила знаков внутренних силовых факторов (ВСФ). Рассмотрим правила знаков для внутренних усилий, применяемые в машиностроении: 1. Продольная сила считается положительной, если она вызывает растяжение отсеченной части и отрицательной, если вызывает ее сжатие.
2. Поперечная сила считается положительной, если она вращает отсеченную часть по ходу часовой стрелки и отрицательной, если вращение происходит против хода часовой стрелки.
3. Изгибающий момент положителен, если сжаты верхние волокна отсеченной части, и отрицателен, если сжаты нижние волокна. Эпюра изгибающих моментов строится на сжатых волокнах.
4. Правило знаков для крутящего момента удобно принимать произвольным.
Запишем выражение изгибающих моментов для текущегосечения z, например, в консольной балке, находящейся под действиемсосредоточенной силы (рис. 1.12):
— уравнение прямой.
Из этого следует, что на прямолинейном ненагруженном внешней пролетной нагрузкой участке стержня эпюра моментов прямолинейна, а эпюра поперечных сил постоянна (рис. 1.13, а, б, в).
Рис. 1.13 Рис. 1.14
Запишем выражение изгибающих моментов для текущего сечения z в случае изгиба консольной балки, находящейся под действием равномерно распределенной нагрузки (рис. 1.14, а):
— это уравнение квадратной параболы. В соответствии с дифференциальной зависимостью Журавского:
— уравнение прямой.
Таким образом, на участке с распределенной нагрузкой эпюры изгибающих моментов очерчены по квадратичной параболе с выпуклостью навстречу действию распределенной нагрузки, а эпюра поперечных сил имеет вид трапеции или треугольника и ограничена прямой наклонной линией АВ, при этом направление наклона (при обходе слева направо) совпадает с направлением (рис. 1.13 и 1.14).
Примеры построения эпюр (рис. 1.15).
Рис. 1.15
3. напряжения и деформации
Интенсивность, равная величине внутренних сил, приходящихся на единицу площади называется напряжением в точке (рис. 1.16) и является ключевым понятием в сопромате.
Существует 2 вида напряжений:
,
Рис. 1.16
причем (сигма) — нормальное напряжение, действует по нормали (перпендикуляру) к площадке;
(тау) — касательные напряжения, они скользят по площадке, касаются ее (рис. 1.16, в).
Напряжения измеряются в Н / м 2 (Па) и МПа. Иногда используют полное напряжение (рис. 1.16, а, б).
.
Понятие о деформациях. Реальные тела под воздействием внешних сил могут изменять свою форму и размеры — деформироваться. Определение величины этих изменений называется расчетом на жесткость. Все возможные изменения формы можно оценить, используя всего лишь два вида деформаций — линейные (рис. 1.17) и угловые (рис. 1.18). Рис. 1.17
При нагружении растягивающими силами стержень удлиняется. Изменение первоначальной длины стержня называется абсолютным удлинением. Рис. 1.18
Центральное растяжение (сжатие) возникает в случае, когда стержень нагружен силами, совпадающими по направлению с его осью (рис. 1.120). В этом случае из шести внутренних силовых факторов пять равны нулю и только продольная сила .
Рис. 1.20
На растяжение, сжатие работают многие элементы конструкций: стержни ферм, колонны, штоки паровых машин и поршневых насосов, стяжные винты, канаты лебедок и другие детали. Сдвиг или срез возникает, когда внешние силы смещают два параллельных сечения одно относительно другого, при неизменном расстоянии между ними. На сдвиг или срез работают, например, заклепки или болты, скрепляющие элементы, которые внешние силы пытаются сдвинуть (рис. 1.21).
Рис. 1.21 Рис. 1.22
Кручение возникает при действии на стержень внешних сил, образующих моменты относительно продольной оси стержня. При этом из шести внутренних сил только . На кручение работают валы, шпиндели токарных и сверлильных станков, роторы двигателей и другие детали (рис. 1.22). Изгиб — это такой вид нагружения, когда внешние силы вызывают моменты относительно оси симметрии (или главной оси), расположенный в плоскости поперечного сечения. Этот момент называется изгибающим. Самый простой случай — это плоский изгиб, когда все внешние силы лежат в одной плоскости, совпадающей во всех рассматриваемых нами случаях с плоскостью симметрии (или главной плоскостью) балки.
Дата добавления: 2014-01-04; Просмотров: 2525; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |