КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 10. Аппроксимация функции. Пример
В качестве примера рассмотрим исходные данные, с которыми мы работали для нахождения интерполяционного полинома методом Ньютона. Таблица
В качестве примера я не стала брать сотни значений, хотя, если будет такая практическая необходимость, это не сильно усложнит расчеты – нужно будет найти их сумму, сумму их квадратов и т.п., но получена будет все равно система из 2 уравнений, как и в нашем случае. Предположим, что зависимость является линейной. В качестве аппроксимирующего многочлена выберем многочлен первой степени вида: . Тогда . Система линейных уравнений для поиска параметров будет иметь следующий вид: , где значения коэффициентов при неизвестных параметрах равны: Получаем систему , решая которую методом Гаусса получаем . Следовательно, функция, аппроксимирующая заданную табличную функцию , имеет вид: .
Задача 1. Известно, что использование кислот соляной и кремнефтористоводородной , благодаря растворению терригенных коллекторов, углубляет и развивает сеть каналов. Но одновременно и ограничивает приток пластовых вод к скважине за счет закупорки фильтрационных каналов в водоносном пласте осадками кремнефторидов. Проблемы поиска оптимального режима обработки призабойной зоны с целью снижения пластовых потерь нефти приводят к необходимости исследования зависимости количества выпадающего осадка от свойств пластовой воды. В таблице приведены результаты эксперимента по смешиванию пластовой воды при температуре с кремнефтористоводородной кислотой с последующей фильтрацией полученного раствора [1]. Таблица 13
Получите линейную и квадратичную зависимости и постройте графики исходных данных и полученных функций
Дата добавления: 2014-01-04; Просмотров: 359; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |