КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Аэрофотосъемка
ТЕМЫ: 12.1 Аэрофотосъемка. 12.2 Космосъемка. 12.3 Навигационные системы. Я ЛЕКЦИЯ Под съемками местности в аэрокосмических методах исследования принято понимать процесс дистанционной регистрации излучения с записью принимаемых сигналов в форме изображений (снимков), графиков и регистрограмм, а также в числовой форме. Основной, наиболее распространенной и удобной для практического использования формой записи результатов съемок является фотоизображение, в которое могут преобразовываться регистрируемые сигналы практически во всех диапазонах электромагнитного спектра. Аэрокосмические методы исследований базируются в основном на использовании фотографирующих съемочных, систем, к которым принято относить системы, дающие на выходе изображения местности, хотя на их входе может фиксироваться не только видимое излучение, но и излучение других диапазонов спектра - ультрафиолетовое, инфракрасное, микроволновое. Фотографирующая система может быть фотографической, работающей по принципу прямого оптического проектирования видимых лучей на светочувствительные фотослои, и нефотографической (оптико-электронной), в которой визуализация регистрируемого излучения осуществляется косвенно, путем электронно-оптических преобразований электрических сигналов. Съемки земной поверхности, выполняемые с воздушных и космических носителей аппаратуры, в свою очередь можно подразделить на фотографические и нефотографические. По принципу и методу регистрации излучения в группе нефотографических съемок различают телевизионную оптическую (кадровую) и оптико-механическую (сканерную), фототелевизионную и радиолокационную съемки. Перспективными, но пока находящимися в стадии разработки, также являются в этой группе лазерная, голографпческая и акустическая съемки. Нередко в литературе можно встретить также классификацию нефотографических съемок, связанную с названиями отдельных диапазонов спектра. В ней выделяют обычно ультрафиолетовую, инфракрасную, радиотепловую и радиолокационную съемки. Следует отметить, что методы съемок могут быть пассивные и активные, а также многозональные и многоспектральные. В пассивных методах используются съемочные системы, которые сами не генерируют излучения, а регистрируют естественное излучение земной поверхности (солнечное видимое, инфракрасное, микроволновое). В активных методах, например радиолокации, используется съемочная аппаратура, генерирующая направленное излучение, воспринимающая отраженный от поверхности сигнал и преобразующая его в изображение. Многозональный метод съемки, который может применяться в фотографическом и нефотографическом варианте, состоит в одновременной регистрации излучения данного диапазона спектра (преимущественно -видимого, включая ближнюю ИК-зону) в нескольких, обычно не более 6, узких его участках. Многоспектральный метод съемки, который применяется в нефотографическом варианте, заключается в одновременной индикации излучения многих диапазонов спектра также в узких их участках. В настоящее время многоспектральная съемка может вестись, охватывая одновременно ультрафиолетовую, видимую, вею инфракрасную и даже частично микроволновую области спектра. С этой целью используется нефотографическая аппаратура, содержащая до 13 и более съемочных каналов. . Элементы внешнего ориентирования воздушных и космических снимков определяются либо непосредственно при съемке с помощью специальных устройств и приборов (радиогеодезические станции, радиовысотомеры, статоскопы), либо косвенно, путем отыскания необходимых параметров на основе аналитического решения так называемой обратной фотограмметрической задачи по данным геодезической или географической привязки снимков к местности. При космической фотосъемке задача определения элементов внешнего ориентирования может быть решена также по данным измерения фотоснимков звездного неба. Эти снимки получают с помощью специальной звездной камеры, определенным образом ориентированной относительно камеры, фотографирующей земную поверхность. Обе камеры работают синхронно, что обеспечивает одновременное получение снимков земной поверхности и звездного неба.
Аэрокосмические съемки принято делить на ряд классов и видов в зависимости от назначения, используемых носителей, съемочной аппаратуры, технологии выполнения съемки, формы представления результатов. Существуют несколько разновидностей съемок с самолета: аэрофотографическая, тепловая инфракрасная, радиолокационная и др. Кроме того, традиционные аэрометоды включают ряд так называемых геофизических съемок — аэромагнитную, аэрорадиометрическую, аэроспектрометрическую, в результате выполнения которых получают не снимки, а цифровую информацию об исследуемых объектах. Из всех съемок наиболее распространенной является аэрофотографическая съемка. В зависимости от направления оптической оси аэрофотоаппарата различают плановую и перспективную аэрофотосъемку. При плановой {вертикальной) аэрофотосъемке оптическую ось аэрофотоаппарата приводят в отвесное положение, при котором снимок горизонтален. Однако в процессе полета по прямолинейному маршруту аэросъемочный самолет периодически испытывает отклонения, которые характеризуют углами тангажа, крена и сноса (рыскания). Из-за колебаний самолета аэрофотоаппарат также наклоняется и разворачивается. Принято к плановым относить снимки, имеющие угол наклона не более 3°. При перспективной аэрофотосъемке оптическую ось аэрофотоаппарата устанавливают под определенным углом к вертикали. По сравнению с плановым перспективный снимок захватывает большую площадь, а изображение получается в более привычном для человека ракурсе. По характеру покрытия местности снимками аэрофотосъемку делят на одномаршрутную и многомаршрутную. Одномаршрутная аэрофотосъемка применяется при исследованиях речных долин, прибрежной полосы, при дорожных изысканиях и т. д. Выборочную маршрутную аэрофотосъемку характерных объектов географ может выполнять самостоятельно, сочетая ее с аэровизуальными наблюдениями. Для этих целей удобно использовать ручной аэрофотоаппарат или цифровую фотокамеру. Наибольшее производственное применение, прежде всего для топографических съемок, получила многомаршрутная (площадная) аэрофотосъемка, при которой снимаемый участок сплошь покрывается серией параллельных прямолинейных аэросъемочных маршрутов, прокладываемых обычно с запада на восток. В маршруте на каждом следующем снимке получается часть местности, изображенной на предыдущем снимке. Аэрофотоснимки, получаемые с продольным перекрытием, образуют стереоскопические пары. Продольное перекрытие, выражаемое в процентах, устанавливается в зависимости от назначения аэрофотосъемки различным — от 10 до 80 % при среднем значении 60 %. Аэрофотосъемочные маршруты прокладывают так, чтобы снимки соседних маршрутов имели поперечное перекрытие. Обычно поперечное перекрытие составляет 30 %. Перекрытие снимков позволяет объединить разрозненные аэроснимки в единый массив, целостно отображающий заснятую территорию. Время для съемки выбирают так, чтобы снимки содержали максимум информации о местности. Учитывают наличие снежного покрова, смену фенофаз развития растительности, состояние сельскохозяйственных угодий, режим водных объектов, влажность грунтов и т. д. Обычно аэрофотосъемку выполняют в летние безоблачные дни, в околополуденное время, но в некоторых случаях, например для изучения почв, лесов, предпочтение отдают поздневесенним или раннеосенним съемкам. Съемка плоскоравнинной местности при низком положении Солнца в утренние или вечерние часы позволяет получить наиболее выразительные аэроснимки, на которых микрорельеф подчеркивается прозрачными тенями. Однако освещенность земной поверхности должна быть достаточной для аэрофотографических съемок с короткими экспонирующими выдержками. Поэтому съемку при высоте Солнца менее 20° обычно не производят. По завершении летно-съемочных работ оценивается качество полученных материалов: определяется фотографическое качество аэронегативов (величина коэффициента контрастности, максимальная плотность, плотность вуали), проверяется прямолинейность съемочных маршрутов, контролируется продольное и поперечное перекрытие и др.
Вида аэрофотосъемок. Понятие о съемочном процессе. Фотографирование местности с воздуха может вестись не только с самолетов, но и с других носителей съемочной аппаратуры: вертолетов, воздушных шаров, аэростатов, дирижаблей, планеров и т. п. Основное требование к аэрофотосъемочному полету состоит в том, чтобы самолет летел строго по намеченному прямолинейному маршруту на одной заданной высоте и сохранял при этом максимально возможную устойчивость. В реальных условиях полета штурман-аэрофотосъемщик, учитывая угол сноса самолета под влиянием ветра, находит такой курс его следования, при котором обеспечивается полет с некоторой путевой скоростью в заданном направлении относительно земной поверхности. За работой всего комплекса аэрофотосъемочной аппаратуры (аэрофотоаппарат, радиовысотомер, статоскоп, фоторегистрирующие приборы) следит непосредственно бортоператор. По данным о скорости и высоте полета он определяет и устанавливает на командном приборе такой интервал съемки, при котором выдерживается определенное перекрытие снимков в маршруте. В практике аэрофотосъемки принято по-разному называть и обозначать высоты фотографирования, измеряемые относительно различных уровней. Если высота фотографирования определяется от уровня моря, ее называют абсолютной. Высота фотографирования, измеряемая относительно уровня аэродрома, называется относительной. Высоты фотографирования, кроме того, могут измеряться относительно среднего уровня территории съемки или относительно конкретной точки на земной поверхности. В этом случае их называют соответственно средними и истинными высотами фотографирования. При расчете масштаба фотографирования, как правило, исходят из средней высоты фотографирования. В зависимости от значений угловых элементов внешнего ориентирования камеры и характера покрытия местности снимками различают перспективную, плановую и стабилизированную аэрофотосъемку, а также аэрофотосъемку одинарную, одномаршрутную и площадную (рис. 61).
Рис. 44 Схемы одинарной (а), одномаршрутной (б) и площадной (в) аэрофотосъемки Перспективную съемку выполняют при значительных углах наклона оптической оси камеры от отвесной линии. При плановой аэрофотосъемке оптическую ось камеры стремятся установить в отвесное положение, удерживая ее в фотоустановке в горизонтальном положении по уровню. При этом удается обеспечить вертикальность оптической оси камеры с погрешностью, не, превышающей обычно 3°. Стабилизированную аэрофотосъемку выполняют с помощью специальной гиростабилизирующей фотоустановки, которая обеспечивает получение снимков с углами наклона не более 40'. В настоящее время в целях картографирования выполняют, как правило, только плановую и стабилизированную аэрофотосъемку.Под одинарной аэрофотосъемкой подразумевается, Для того чтобы обеспечить в процессе аэрофотосъемки заданную величину продольного перекрытия, командный прибор должен включать АФА через заданные интервалы времени. Дешифрированием в аэрокосмическом методе называется процесс извлечения необходимой полезной информации об изучаемой территории из материалов аэрокосмической съемки. В результате дешифрирования специалист получает определенное количество исходных фактических сведений и данных, которые интерпретируются в соответствии с конкретной тематикой исследования и лежат в основе создаваемой тематической карты. Из всех видов регистрации информации, характеризующей изучаемую местность, предпочтение отдается наглядным видеоизображениям — воздушным снимкам и их монтажам, космическим снимкам и наземным фототеодолитным фотографиям. Эти материалы являются основными для дешифрирования и изучения территориальных особенностей, но и другие виды представления зарегистрированной информации, например запись на магнитной ленте, не остаются без внимания в аэрокосмическом методе исследований. В процессе дешифрирования видеоизображений решается ряд задач, а именно: а) распознавание и классификация объектов местности или их комплексов, изобразившихся на снимках; б) установление взаимосвязей между отдельными объектами и характерных особенностей их пространственного размещения и в) распознавание и фиксация динамических процессов и природных явлений, возникающих и протекающих на данной территории. Из большого количества информации, содержащейся на воздушных и космических снимках, в процессе дешифрирования, как правило, выбирается не вся, а только некоторая часть. Дешифрирование фотографий непосредственно на местности - (полевое дешифрирование) представляет собой комплекс работ, осуществляемых в натуре путем прокладывания наземных маршрутов. Распознавание и классификация участков и объектов местности, являющихся предметом исследования, производится путем сличения фотографических изображений. Благодаря такому способу достигается высокая степень достоверности дешифрирования и максимальная полнота. Помимо расшифровки фотографических изображений и их классификации в комплекс наземных работ при полевом дешифрировании входят следующие операции: а) нанесение на дешифрируемые снимки объектов, которые по ряду причин не нашли своего изображения, но имеют существенное значение для данного исследования и создаваемой, тематической карты; б) уточнение границ различных участков, неясно выразившихся на снимках; в) вычерчивание на фотоснимках объектов и участков, исчезнувших на местности, и нанесение на них появившихся вновь; г) сбор дополнительных сведений и характеристик соответственно тематике исследований и д) установление и сбор географических наименований. Таким образом, в комплекс «полевое дешифрирование» помимо собственно дешифрирования включаются съемочные операции, а также исследования и измерения, соответствующие теме составляемой карты и задачам географического исследования. При полевом дешифрировании снимки выполняют двойную функцию: во-первых, снабжают специалиста рядом необходимых фактических данных, содержащихся на них, и, во-вторых, являются основой, на которую наносятся те объекты местности, которые составляют предмет исследования и нагрузку составляемой карты. Одно из преимуществ полевого дешифрирования состоит в том, что при его производстве местность изучается на момент дешифрирования, а не на момент фотографирования. В самом деле, летно-съемочные работы и полевое дешифрирование нередко бывают разделены некоторым промежутком времени, за который на местности могли произойти более или менее существенные изменения. Полевое дешифрирование позволяет уточнить устаревшие аэрофотоснимки. Важным преимуществом полевого дешифрирования является то, что в процессе полевых работ на аэрофотоснимок можно нанести объекты, которые на нем не изобразились или из-за недостаточного разрешения фотослоя, или из-за того, что они закрыты другими объектами (например, детали местности под пологом леса), или из-за малого интервала яркостей объектов и фона, на котором они размещены. Немаловажное преимущество полевого дешифрирования состоит в возможности в процессе полевых работ безошибочно установить географические наименования речек, ручьев, урочищ, населенных пунктов и т. д. Наряду с этими достоинствами полевого дешифрирования отметим ряд недостатков. Одним из них является большая затрата средств на организацию и выполнение полевых работ. Кроме того, само производство полевого дешифрирования сопряжено со значительными затратами труда и сил дешифровщика.. Перед выходом на местность для производства полевого дешифрирования необходимо провести некоторые предварительные, работы, которые заключаются в следующем: а) географическое изучение района исследований и составление ряда документов, способствующих полевому дешифрированию; б) предварительное камеральное дешифрирование тех изображений, которые не вызывают никаких сомнений в их значении, например дорог, пашен", ручьев, границ леса и пр.; в) отбор, оценка и подготовка для дешифрирования материалов аэрофотосъемки. В подготовительный период создается предварительная схема-проект наземных маршрутов. Эта схема составляется на восковке или пластике, которые накладываются на накидной монтаж, смонтированный из контактных отпечатков, отобранных через номер. На схеме тушью или фломастером вычерчиваются проектируемые наземные маршруты, по ходу которых должно производиться полевое дешифрирование. Выбор маршрутов производится с учетом тематики создаваемой карты. Например, маршруты геоморфологического дешифрирования будут отличаться от маршрутов геоботанического, топографического и других видов дешифрирования. При составлении схемы-проекта наземных маршрутов следует соблюдать следующие правила. Маршруты должны быть проложены с таким расчетом, чтобы исследователь мог посетить участки и объекты, составляющие предмет исследования. Например, при геологическом или геоморфологическом дешифрировании маршруты должны быть проложены ко всем обнажениям, поперек речных долин, проходить через участки, изображения которых отличаются друг от друга рисунком или фототоном. Полевое дешифрирование производится одновременно с рисовкой горизонталей и дополнительной съемкой объектов местности, не изобразившихся на фотографии, и тех, которые составляют содержание данной тематической карты. Фотосхемы и увеличенные космические снимки целесообразно использовать для полевого дешифрирования тогда, когда обследуется большая по площади территория и создается мелкомасштабная карта (1:100000 и мельче). | Обычно в этом случае полевое дешифрирование проводится с автомашины или вертолета. Аэровизуальное дешифрирование состоит в том, что _производится оно с борта самолета или вертолета. Для этой работы используются тихоходные летательные аппараты,, имеющие скорость полета не более 150 км/ч, так как при большей скорости дешифровщик не успевает различить и зарегистрировать объекты дешифрирования, быстро исчезающие из его поля зрения. Оптимальные высоты, с которых производится аэровизуальное дешифрирование, зависят от скорости полета, задач, исследования и желаемой детальности дешифрирования. Опыт показал, что аэровизуальное дешифрирование целесообразно производить с высот до 200 м. Технологическая схема аэровизуального дешифрирования состоит из нескольких этапов. На первом этапе на материалах аэро-дешифрирования кодовыми обозначениями, которые следует разработать заранее, так как стандартов для них нет. Сплошное полевое дешифрирование в настоящее время все чаще заменяется так называемым комбинированным, которое представляет собой сочетание полевого и камерального. Такая технологическая схема дешифрирования отличается своими экономическими выгодами без ухудшения качества. Существует несколько вариантов комбинированного дешифрирования. Наиболее простым, но и менее экономным является такой процесс комбинированного дешифрирования, при котором все аэрофотоснимки перед выездом на местность подвергаются предварительному камеральному дешифрированию с использованием прямых и косвенных признаков. Камеральное дешифрирование материалов аэрокосмической съемки отличается от полевого тем, что процесс извлечения информации и изучение сфотографированной территории осуществлялся в лабораторных условиях. В настоящее время камеральное дешифрирование интенсивно развивается. По сравнению с полевым имеет ряд преимуществ: экономическая выгодность, экономия времени и трудовых затрат, комфортные условия труда, возможность кооперирования различных специалистов, применение разнообразной аппаратуры, облегчающей труд человека, изучение труднодоступных или вовсе недоступных регионов. В процессе камерального дешифрирования ряд его этапов может быть автоматизирован. К недостаткам камерального - дешифрирования можно отнести то, что во многом оно имеет вероятностный характер, что сказывается на достоверности дешифрирования и требует полевой доработки. Визуальное дешифрирование всегда целесообразно произво Из стереоскопических приборов общеупотребительны следующие: а) зеркальные и призменные стереоскопы; б) зеркальные стереоскопы с переменным увеличением; в) стереопантометры с| параллаксометром; г) интерпретоскопы. Из семейства зеркально-линзовых стереоскопов наиболее удобны для визуального дешифрирования стереоскопы со сменным увеличением, которые изготавливает народное предприятие «Карл-Цейсе» в ГДР. Этот прибор допускает общий обзор всей площади стереопары (или ее большей части). Для детального дешифрирования на прибор надевается насадка с двумя окулярами, имеющими увеличение 4х. Поле зрения при этом уменьшается, но отдельные участки стереомодели рассматриваются с увеличением, что способствует дешифрированию мелких деталей изображения. В комплект к стереоскопу придается параллаксометр, с помощью которого можно измерять линейные продольные параллаксы с точностью не более 0,05 мм и, следовательно, производить обмер стереомодели и определять собственные высоты ряда объектов местности.
Наиболее универсальный стереоскопический прибор для дешифрирования — интерпретоскоп — изготавливается в ГДР (рис. 62). Это прибор стационарного типа и предназначен для визуального дешифрирования воздушных и космических снимков, имеющих размеры от 70X70 до 230X230 мм, изготовленных как на прозрачной основе, так и на непрозрачной. Одно из достоинств прибора состоит в том, что на нем можно обрабатывать неразрезанную на отдельные кадры пленку. Дешифрируемые снимки помещаются на стеклянную столешницу стола, где могут просвечиваться источниками света, расположенными в корпусе стола. Снимки на непрозрачной основе освещаются светильниками такСплошное полевое дешифрирование в настоящее время все чаще заменяется так называемым комбинированным, которое представляет собой сочетание полевого и камерального. Такая технологическая схема дешифрирования отличается своими экономическими выгодами без ухудшения качества. Существует несколько вариантов комбинированного дешифрирования. Наиболее простым, но и менее экономным является такой процесс комбинированного дешифрирования, при котором все аэрофотоснимки перед выездом на местность подвергаются предварительному камеральному дешифрированию с использованием прямых и косвенных признаков. Камеральное дешифрирование материалов аэрокосмической:ъемки отличается от полевого тем, что процесс извлечения информации и изучение сфотографированной территории осуществлялся в лабораторных условиях. В настоящее время камеральное дешифрирование интенсивно развивается. По сравнению с полевым имеет ряд преимуществ: экономическая выгодность, экономия времени и трудовых затрат, комфортные условия труда, возможность кооперирования различных специалистов, применение разнообразной аппаратуры, облегчающей труд человека, изучение труднодоступных или вовсе недоступных регионов. В процессе камерального дешифрирования ряд его этапов может быть автоматизирован. К недостаткам камерального дешифрирования можно отнести то, что во многом оно имеет вероятностный характер, что сказывается на достоверности дешифрирования и требует полевой доработки. Визуальное дешифрирование всегда целесообразно произво
Дата добавления: 2014-01-04; Просмотров: 7555; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |