Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Исследования




Звоночки

Вспомним о входной двери в подъезде дома с набором кнопок для звонков. В принципе возможны два способа устройства этой системы, позволяющих известить о приходе посетителя к жильцу той или иной квартиры: либо все звонки слышны во всех квартирах, но различны по звучанию, либо звук у всех звонков одинаков, но каждый из них раздается только в определенной квартире. В первой системе (звуки разные и слышны везде) «смысловое содержание» звонка заключено в его специфическом звучании, а во второй значение имеет не сам звонок, а способ проводки. Эти две возможности по сути дела иллюстрируют два возможных способа работы биохимического механизма памяти. По мнению тех, кто верит в «молекулы памяти», запоминаемая информация заключена как бы в звонке с уникальным звучанием; для тех же, кто считает память системным свойством мозга, звонок — это лишь часть (хотя и важная) всей системы, и чтобы понять смысл его звучания, надо не прислушиваться к звуку, а знать систему проводки.

Если правилен второй подход, то биохимические события, скорее всего, отражают общий обмен белков, в том числе мембранных. Память же заключена в топографии и динамике нейронной системы. Клеточные механизмы запоминания, скажем, телефонного номера или правил вождения автомобиля существенно не различаются: просто в них участвуют разные клетки, по-разному связанные с другими частями мозга.

Исследования в рамках конструктов, предложенных Хеббом привели к усилению интереса к белковым основаниям памяти. Возник вопрос: если воспроизводство вида можно рассматривать как функцию одной из форм памяти (генетической), как результат способности ДНК, передаваемой от родителей потомству, нести в своей структуре точные инструкции для будущего построения нового организма, то почему бы ДНК или РНК, или белку не быть также носителем приобретенной памяти?

Самые сенсационные, а также самые модные сейчас теории памяти — это те, в которых предполагается качественное изменение молекул РНК и белков в нейроне.

Хиден (Hyden) в Швеции приступил в 1950-х годах к изучению РНК и ДНК нейронов мозга и их возможной роли в хранении следов памяти. В своих первых экспериментах он попытался установить связь между участием нервных клеток в процессах памяти и содержанием в них РНК. Он нашел, что нейроны — самые активные продуценты РНК в организме. Нейроны, содержащие ее в количествах, близких к верхнему пределу, способны хранить очень много информации. Хиден исследовал содержание РНК в мозгу барракуды, рыбы, обитающей в Атлантическом океане. Эта рыба отличается поразительной активностью и подвижностью. Хиден установил у этого вида корреляцию между двигательной активностью и уровнем РНК в мозгу.

Далее он провел очень интересные опыты в связи с научением и памятью. Чтобы достать с полки корм, крысы должны были балансировать на веревке, по которой они могли добраться до корма, натянутой под уклоном 45°. Эту задачу, требующую исключительной ловкости, крысы выполняли за 45 секунд и обучались ей за 4—5 дней. Затем животных умерщвляли и определяли содержание РНК в ядрах Дейтерса в продолговатом мозгу по сравнению с контролем. Хидена регистрировал усиление биосинтеза белка и РНК в небольших участках мозга крыс, обученных балансировать на проволоке. В последующем Хиден, заметив, что отдельные крысы предпочитали доставать корм либо правой, либо левой лапой, он вынуждал животных пользоваться для этой цели «неудобной» лапой, а затем оценивал изменения синтеза РНК и белка в той половине и той области мозга, где осуществлялась моторная координация «обучаемой» лапы, в сравнении с теми же процессами в области, ответственной за действия «необученной» лапы.

Так, Хиден доказал, что общее количество РНК, а также нуклеотидный состав ядерной РНК в вестибулярных нейронах, участвующих в поддержании равновесия, у экспериментальных животных были изменены. Возросло ее общее количество, доля аденина тоже возросла, а доля урацила снизилась. В то же время в цитоплазматической РНК соотношение нуклеотидов не изменилось. По мнению Хидена, главную роль в образовании следов памяти играют не столько количественные изменения (ускоренный синтез белка в связи с увеличением размеров синапсов), сколько специфический механизм хранения информации, сходный с генетическим кодом РНК. (Однако нет данных, которые позволили бы объяснить качественные и количественные изменения, происходящие при обучении не в цитоплазме, а в ядре. Молекула ДНК — чрезвычайно стабильный компонент клетки, не подверженный ни качественным, ни количественным изменениям в связи с активностью нейрона.) Как же в таком случае объяснить изменение в составе РНК, для которой ДНК служит матрицей? Было высказано предположение, что это изменение создается электрическими импульсами, поступающими от мембраны.

Примерно в том же направлении проводили исследования Мак-Коннелл (McConnell) и его сотрудники. Они вырабатывали условные реакции у плоских червей — планарий. На этих животных воздействовали сочетанием светового (условного) и электрического (безусловного) стимулов. Условной реакцией было уплывание. По достижении 100%-ного обучения червей разрезали на две части, головную часть отбрасывали, а хвостовой давали возможность регенерировать головной конец (у планарий регенерация происходит очень быстро). Экспериментаторы обнаружили, что животные с новой головой оказались способны осуществлять выработанную реакцию так же, как до перерезки тела. Информация об этой реакции могла храниться только в нейробластах хвостовой части.

Еще одним был эксперимент, связанный с «каннибализмом» планарий. У группы червей были выработаны условные рефлексы. Затем черви были убиты и размельчены в ступке, а полученные таким образом фрагменты клеток скормлены необученным червям. Эти необученные животные тотчас же оказались способными осуществлять те условные реакции, которые были выработаны у съеденных ими червей. Животных подвергали воздействию света в сочетании с электрическим ударом, после чего разрезали на мелкие части и скармливали другим, необученным червям. По утверждению Мак-Коннелла, последние начинали вести себя так, будто помнили условные реакции, которые были свойственны съеденным ими особям, тогда как у червей, которым скармливали необученных собратьев, поведение не изменялось.

Утверждалось также. Для того чтобы доказать экспериментально, что следы памяти передаются с молекулами РНК, червей держали в растворе с рибонуклеазой — ферментом, разрушающим РНК. У этих животных выработанная реакция и «перенос памяти» не наблюдались. Был поставлен и такой опыт: из обученных червей экстрагировали РНК и скармливали ее необученным животным вместо вытяжки из всего тела. Сообщали, что в этом случае происходил перенос выработанной реакции.

Упоминания об этих опытах в течение нескольких лет мелькали в заголовках научных и общедоступных публикаций, пока не приобрели дурную славу, так как выяснилось, что у плоских червей вообще очень трудно выработать ассоциацию между световым стимулом и электрическим ударом, не говоря уже о воспроизведении последующих этапов эксперимента.

Первые данные о феномене «переноса памяти» у млекопитающих были опубликованы в 1965 г. скандинавскими, чехословацкими и американскими учеными почти одновременно. Согласно этим сообщениям, вытяжки из всего мозга или РНК обученных животных стимулировали условнорефлекторную активность у необученных. Но были проведены уточняющие эксперименты в таком роде, и хотя они подтвердили стимулирующее действие экстракта мозга на процессы научения, они показали также, что это объяснялось не «переносом памяти», а только неспецифическим стимулирующим эффектом некоторых компонентов. Такие вещества и раньше экстрагировались из органов животных, но никто не утверждал, что тем самым открыт «код памяти».

Не исключено, что пептиды мозговых вытяжек, содержащие большее или меньшее число аминокислот, могут играть стимулирующую роль в фиксации следов памяти. И действительно, Г.Унгар (G. Ungar) в Хьюстоне и другие получили пептиды, стимулирующие научение. В своих экспериментах он использовал тот факт, что грызуны (крысы или мыши), имея возможность выбирать между освещенным и темным отделениями клетки, предпочитают находиться в темноте. Унгар помещал крыс в ящик с выходом на освещенный манеж, в одном из углов которого имелось темное отделение. При попытке забежать в него крысы получали электрический удар и в результате быстро отучались от врожденной привычки. После этого экстрагированный из их мозга материал впрыскивали мышам, которых помещали в аналогичные условия, предоставляя выбор между светом и темнотой, но без электрического воздействия. По утверждению Унгара, такие мыши отказывались заходить в темное отделение — в отличие от контрольных мышей, которым вводили материал от необученных крыс.

Вместе со своими сотрудниками Унгар предпринял попытку выделить вещество, якобы передающее информацию о «страхе перед темнотой» в чистом виде. Активным фактором Унгара оказался не белок и не нуклеиновая кислота, а пептид (пептиды — вещества, образованные короткой цепью не более чем из 15—20 аминокислотных остатков), который можно было вводить путем инъекции, что позволяло избежать его переваривания в желудочно-кишечном тракте. Полученный пептид состоял из 15 аминокислот и был назван «скотофобином» (от греч. скотофобия — боязнь темноты). Критика в его адрес строилась на следующих вопросах.

Как ничтожные количества введенного пептида могли направляться к нужным нейронам и проникать именно в них, чтобы закодировать новую информацию памяти? Почему высокоспецифические элементы памяти и поведения у разных особей или видов животных должны кодироваться одним и тем же пептидом? И если пептиды действительно кодируют память, не должно ли их быть в мозгу гораздо больше, чем удалось обнаружить? Если бы на самом деле существовали «пептиды памяти» и концентрация каждого из них была такой же, как концентрация скотофобина, то для кодирования воспоминаний на протяжении человеческой жизни их содержание в мозгу достигало бы, наверное, сотни килограммов, что намного больше среднего веса нашего тела.

Однако вскоре выяснилось, что и скотофобин не явился той молекулой памяти, которая была бы способна записывать ту или иную конкретную информацию. По своей структуре скотофобин оказался похож на молекулу АКТГ, которая также обладала способностью улучшать формирование памяти, но не являлась специфичной ни для одного навыка.

В экспериментах Унгара мышей выпускали на освещенный манеж и наблюдали за их поведением. При этом отмечали время, которое требовалось животным, чтобы зайти в темное отделение, и если их не оказывалось там к заранее установленному сроку, скажем через минуту, опыт прекращали. Нужно было сравнивать время, затраченное мышами, получавшими материал от обученных и от необученных крыс. Первые отличались от вторых тем, что получали электрический удар, т. е. подвергались стрессорному (болевому) воздействию при попытке проникнуть в темный ящик. У мышей и крыс реакция на стресс обычно проявляется в оцепенении — животное застывает в неподвижности. Предположим теперь, что в результате стресса, связанного с электрическим ударом, образуется какой-то гормон, например пептидный, который вызывает оцепенение. В мозгу обученных (т. е. подвергавшихся «наказанию») крыс его концентрация должна быть выше, чем у необученных животных, и при введении мышам он в свою очередь должен вызывать оцепенение. В опытах Унгара это поведение регистрировалось бы как задержка перехода в темное отделение и могло быть простым следствием относительно малой подвижности мышей-реципиентов. Его эксперименты были построены таким образом, что эту пониженную активность можно было принять за усвоенную под воздействием скотофобина специфическую реакцию. На самом же деле если что-то и «передавалось» мышам, то это было не специфическое приобретенное поведение, а общая эмоциональная реакция на стресс, что совсем не одно и то же. Вторая причина не имеет столь негативного подтекста. Унгар проводил свои опыты еще до того, как другие исследования, позднее давшие начало новой важной ветви нейрофармакологии и выдвинувшие ряд выдающихся ученых, показали, какую важную роль играют многие пептиды в мозгу. Из них наиболее известны болеутоляющие морфиноподобные вещества из группы опиоидных пептидов, такие как энкефалины и эндорфины. В настоящее время открыты десятки таких мозговых пептидов, многие из которых близко родственны гормонам, действующим в других частях тела. Они функционируют как нейромедиаторы и как модуляторы нейронной активности (нейромодуляторы) и имеют отношение не только к боли, но и к удовольствию, стрессу, возбуждению, вниманию и ряду других душевных и телесных состояний общего характера. Поразительно (а может быть, в этом и нет ничего неожиданного), что мифический скотофобин Унгара по своему аминокислотному составу весьма напоминает энкефалины и эндорфины. Сам того не подозревая, Унгар столкнулся с совершенно новой возможностью познавать химические основы мозговых функций; однако он умер, так и не узнав о совсем опередившем время, но неверно истолкованном открытии.

Но даже Унгар не стал бы заявлять, что, например, скотофобин — пептид из 15 аминокислот — содержит «код памяти» для условного рефлекса избегания света у крысы. Этот автор полагает, что правильнее считать его стимулятором, способствующим синаптической передаче. Возбуждение, вознаграждение и наказание ассоциируются с изменениями содержания в мозгу и кровяном русле опиоидных и других пептидов. Поэтому инъекции этих пептидов или взаимодействующих с ними веществ могут изменить поведение или проявления памяти. Следовательно, они могут влиять на процесс научения, хотя непосредственно не участвуют в его механизмах, — точно так же, как настройка тембра и громкость в магнитофоне влияют на качество записи и ее воспроизведения, но не имеют прямого отношения к содержанию того, что записано на магнитной ленте.

Позже стали появляться сообщения об аналогичных опытах на млекопитающих. Ученик Мак-Коннелла, А.Джекобсон в 1965 г. сообщил, что он обучал крыс подходить к кормушке при вспышке света или щелчке, после чего забивал животных, экстрагировал из их мозга РНК и вводил ее в пищеварительный тракт необученных особей; тогда последние тоже приобретали склонность подходить к кормушке при подаче соответствующего сигнала (щелчка или световой вспышки), хотя кормушка была пуста и животные не получали подкрепления.

Наконец сходные исследования начали проводить на людях. Ю.Камерон добавлял в пищевой рацион пожилых людей с расстройствами памяти большие количества РНК (обычно 100 г экстракта дрожжевой РНК, что действительно очень много). Он утверждал, что это значительно повышало способность его пациентов вспоминать события прошлого. Более чем вероятно, что у обследованных Камероном людей из дома престарелых память улучшалась уже от одного сознания, что их заметили, или, возможно, их просто плохо кормили, как это нередко бывает в домах для престарелых, и вводившаяся РНК служила полезной добавкой к рациону.

Утверждения об улучшении памяти под действием РНК вызвали острую полемику в научной литературе; многие лаборатории пытались воспроизвести эти результаты, но в большинстве случаев безуспешно.

В последние годы был открыт еще ряд веществ, влияющих на образование и консолидацию энграммы. В частности, белки - 100 и 14 - 3 - 2. Белок - 100 взаимодействует с системой сократительных белков и системой транспорта кальция в нейронах и глиальных клетках, а белок 14 - 3 - 2 участвует в процессах гликолиза в нервных клетках. Установлено, что при различных видах обучения количество этих белков в нейронах коры и гиппокампа значительно возрастает.

Некоторые гормоны также способны влиять на процессы формирования памяти. Так, вазопрессин улучшает обучение и консолидацию следов памяти, а окситоцин, напротив, вызывает забывание той или иной информации, амнезию. Эндорфины и энкефалины ухудшают формирование условных рефлексов и запоминание, но улучшают хранение уже имеющейся информации, регулируя память посредством взаимодействия с медиатором и уже через них оказывая влияние на метаболизм макромолекул. Введение адренокортикотропного гормона или его фрагментов приводит к активации нейронов во многих отделах нервной системы.

Подобные исследования имеют социальное значение. При введении в желудочки мозга энкефалины вызывают у экспериментальных животных необычайную агрессивность, изменяют их поведение, меняют взаимоотношения между отдельными особями внутри стада. Изучаются пептиды забывания, привыкания, узнавания, раздваивающие личность испытуемого. Например, описан такой эксперимент: человек запоминает информацию, пока действует введенный ему пептид, а когда кончается действие, он не может ее вспомнить. При повторном введении того же препарата пациент вспоминает ранее сообщенный ему текст. Другими словами, такой человек становится своеобразным закодированным посланием, «расшифровать» которое можно, введя ему пептид. Сравнительно недавно удалось получить ряд синтетических энкефалинов, влияние которых отличается более высокой эффективностью, чем действие нейропептидов, вырабатываемых организмом.

В последние годы большое значение придается ГАМК-ергическим механизмам в процессах памяти. ГАМК и ее аналоги существенно улучшают обучение, образование энграммы, улучшают воспроизведение хранящейся информации. Это используется, в частности, в клинике. Для улучшения ряда интеллектуальных процессов используется аналог ГАМК - ноотропил.

Все ныне существующие представления и гипотезы о нейрофизиологических основах памяти не являются до конца изученными и доказанными. В этой связи и на сегодняшний день эта проблема интригующе интересна как для физиологов, так и для психологов.

В настоящее время имеются препараты, введение которых перед обучением или сразу после него улучшает память (т. е. сохранение ее следов): это видно из результатов испытаний спустя несколько часов или дней после обучения. Другие вещества ухудшают память. Открытие проактивного и ретроактивного воздействия на формирование следов памяти вызвало погоню за лекарственными средствами, которые могли бы облегчить процесс обучения и улучшить память, особенно у пожилых людей, страдающих болезнью Альцгеймера и другими расстройствами памяти.

Так, в 1963 году, У.Дингман и М.Спорн провели первые опыты с использованием ингибиторов. Они обучали крыс плавать в заполненном водой лабиринте и вводили им ингибитор синтеза РНК. Сначала они установили, что ингибитор не влиял на способность крыс плавать вообще и не заставлял их ошибаться, если ко времени инъекции они уже умели находить верный путь. Но если ингибитор вводили с таким расчетом, чтобы синтез РНК уже прекращался во время обучения, то при последующем испытании крысы не помнили правильной дороги. За этим экспериментом быстро последовали другие, где применялись ингибиторы белкового синтеза, и все они, по сути, приводили к тому же выводу: при подавлении синтеза белка во время обучения животных или в первые часы после его завершения крысы могли освоить задачу, но в случае более позднего тестирования (скажем, на следующий день) они вели себя так, как будто совсем не обучались. По-видимому, для долговременного запоминания необходим синтез белка.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 403; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.