Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Упрочнение легированием




Поверхностное упрочнение деталей

Лекция 11.

Пример 2.

Пример 1.

Схема данных

ПРИМЕРЫ ВЫПОЛНЕНИЯ СХЕМ

ПРИМЕНЕНИЕ СИМВОЛОВ

Пример.

Примеры.

4.3.2. Повторяющееся представление

4.3.2.1. Вместо одного символа с соответствующим текстом могут быть использованы несколько символов с перекрытием изображения, каждый из которых содержит описательный текст (использование или формирование нескольких носителей данных или файлов, производство множества копий печатных отчетов или форматов перфокарт).

4.3.2.2. Когда несколько символов представляют упорядоченное множество, это упорядочение должно располагаться от переднего (первого) к заднему (последнему).

4.3.2.3. Линии могут входить или исходить из любой точки перекрытых символов, однако требования п. 4.2.4 должны соблюдаться. Приоритет или последовательный порядок нескольких символов не изменяется посредством точки, в которой линия входит или из которой исходит.

Си м вол Наименование символа Схема данных Схема программы Схема работы системы Схема взаимодействия программ Схема ресурсов системы
Символы данных            
Основные            
  Данные + + + + +
  Запоминаемые данные + - + + +
Специфические            
  Оперативное запоминающее устройство + - + + +
  Запоминающее устройство с последовательной выборкой + - + + +
  Запоминающее устройство с прямым доступом + - + + +
  Документ + - + + +
  Ручной ввод + - + + +
  Карта + - + + +
  Бумажная лента + - + + +
  Дисплей + - + + +
Символы процесса            
Основные            
  Процесс + + + + +
Специфические            
  Предопределенный процесс - + + + -
  Ручная операция + - + + -
  Подготовка + + + + -
  Решение - + + - -
  Параллельные действия - + + + -
  Граница цикла - + + - -
Символы линий            
Основные            
  Линия + + + + +
Специфические            
  Передача управления - - - + -
  Канал связи + - + + +
  Пунктирная линия + + + + +
Специальные символы            
  Соединитель + + + + +
  Терминатор + + + - -
  Комментарий + + + + +
  Пропуск + + + + +
Примечание. Знак «+» указывает, что символ используют в данной схеме, знак «-»-не используют.

ПРИЛОЖЕНИЕ
Справочное

2. Схемы программы

3. Схема работы системы

4. Схема взаимодействия программ

5. Схема ресурсов системы

 

 

К основным способам упрочнения металлов и сплавов относятся: легирование с образованием твердых растворов; пластическое деформирование; создание дисперсных выделений; упрочнение термическими методами; упрочнение химико-термическими методами.

 

 

Формирование благоприятной структуры и надежность работы деталей обеспечивает рациональное легирование, измельчение зерна и повышение качества металла.

Упрочнение при легировании увеличивается пропорционально концентрации легирующего элемента в твердом растворе. При этом надо помнить, что различные легирующие элементы имеют ограниченную растворимость в основных фазах сплава и это зависит от относительной разницы атомных радиусов компонентов. Образование твердых растворов разных типов (замещения, внедрения, упорядоченных, не упорядоченных и др.) создают комбинации различных дислокационных образований с многообразными характеристиками прочности.

Измельчение зерна осуществляется легированием и термической обработкой. Наиболее эффективное измельчение структуры достигается при высокотемпературной термомеханической обработке. Она предусматривает пластическую деформацию аустенита с последующим превращением в мартенсит. В результате высокотемпературной термомеханической обработки обеспечивается наиболее благоприятное сочетание высокой прочности с повышенной пластичностью, вязкостью и сопротивлением разрушению. Упрочнение растет по мере увеличения концентрации растворенного легирующего элемента и различия в атомных радиусах железа и этого элемента. Наиболее сильно повышают твердость медленно охлажденного феррита (рис. 10.1.) Si, Mn, Ni,.т.е те элементы, имеющие отличную от Feα кристаллическую решетку. Слабее влияют Mo, V и Cr, решетки которых изоморфны Feα. Повышение чистоты сплава достигается металлургическими приемами путем удаления вредных примесей серы, фосфора, газообразных элементов – кислорода, водорода, азота.

При введении в сталь легирующих элементов, растворимость которых в решетке железа может изменяться в зависимости от температуры, наблюдается эффект, называемый дисперсионным твердением. Для этого необходимо получить пересыщенный твердый раствор с повышенной концентрацией растворенного элемента. Такой твердый раствор является неравновесным и стремиться к распаду. Процесс распада пересыщенного твердого раствора при комнатной температуре называется естественным старением. При некотором нагреве – искусственным старением.

При старении избыточный элемент выделяется из кристаллической решетки металла-растворителя в виде мельчайших частиц, которые называют дисперсной фазой.

Дисперсная фаза, будучи равномерно распределена в твердом растворе, искажает кристаллическую решетку последнего и изменяет механические свойства сплава. Повышение твердости, прочности наблюдается только в том случае, когда сохраняется когерентность (непрерывность) атомно-кристаллических решеток дисперсной фазы и твердого раствора.

Дисперсионное твердение связано с диффузионными процессами и поэтому продолжительность старения оказывает существенное влияние на эффект дисперсионного твердения. Дисперсионное твердение в сложнолегированной стали с несколькими легирующими элементами часто проявляется совершенно иначе, чем в стали с одним легирующим элементом. Дополнительные легирующие элементы могут увеличивать или уменьшать растворимость основного элемента, вызывающего дисперсионное твердение и тем самым увеличивать или уменьшать эффект упрочнения материала. Дисперсионное твердение сопутствует обычному процессу термической обработки стали и оказывает существенное влияние на ее свойства. Упрочняющими фазами в сталях могут быть карбиды, нитриды, интерметаллиды, химические соединения и др.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 428; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.