Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Примеры матричных игр

Прорыв обороны. Первый игрок выбирает систему зенитного вооружения. Второй игрок выбирает самолет. Элементы aij задают вероятность поражения самолета j системой i. Цель второго игрока — прорвать оборону.

  Самолеты
Зенитки 0,5 0,6 0,8
0,9 0,7 0,8
0,7 0,5 0,6

В этом примере ход (2, 2) в некотором смысле лучший для обеих сторон: если взять самолет 2, то зенитка 2 — лучшая для первого игрока; если взять зенитку 2, то самолет 2 лучший для второго. В матрице есть седловая точка!

Определение. Седловой точкой матрицы (aij) называют пару (i 0 j 0) такую, что

aij0≤ai0jo≤ai0j

<== предыдущая лекция | следующая лекция ==>
Лекция 14. Принятие решений в условиях неопределенности. Введение в матричные игры | Принцип минимакса (осторожности)
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 553; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.