КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Машина «МИР», 1965р
Машина «Дніпро», 1961р
В 1964 г. за цикл работ по теории автоматов В. М. Глушков был удостоен Ленинской премии. Значение этих работ трудно переоценить, так как использование понятия "автомат" в качестве математической абстракции структуры и процессов, происходящих внутри вычислительных машин, открыло совершенно новые возможности в технологии создания компьютеров. Современные системы автоматизации проектирования вычислительных машин повсеместно используют эти идеи. В 1964 г. В. М. Глушков был избран действительным членом АН СССР по Отделению математики (математика, в том числе вычислительная математика). В области теории программирования и систем алгоритмических алгебр В. М. Глушковым был сделан фундаментальный вклад в виде алгебры регулярных событий. Монография В. М. Глушкова, Г. Е. Цейтлина и Е. Л. Ющенко "Алгебра, языки, программирование", содержащая введение в теорию универсальных алгебр с учетом применения этого аппарата в теоретическом программировании, была опубликована в 1974 г. .Современные ЭВМ невозможно проектировать без систем автоматизации проектно-конструкторских работ. Возможность применения ЭВМ в процессе проектирования ЭВМ стала реальной после того, как в начале 60-х годов были созданы соответствующие разделы абстрактной и структурной теории автоматов, позволившие решить целый ряд задач, возникающих в процессе проектирования электронных схем. Дальнейшее развитие методики проектирования ЭВМ потребовало новой техники, в частности разработки методов блочного синтеза. Основы теории проектирования ЭВМ были заложены в статьях В. М. Глушкова, опубликованных в журнале "Кибернетика" в 1965—1966 гг. и в Вестнике АН СССР в 1967 г. Вскоре стало ясно, что для эффективного использования ЭВМ в процессе проектирования необходимо комплексное решение всех задач, возникающих при автоматизации проектирования. Необходимость применить системный подход к САПР ЭВМ проявилась при создании ЭВМ третьего поколения.
Затем последовали разработки машин МИР-1 (1965 г.), МИР-2 (1969 г.) и МИР-3. Главным их отличием от других ЭВМ была аппаратная реализация машинного языка, близкого к языку программирования высокого уровня. ЭВМ семейства "МИР" интерпретировали алголоподобный язык "Аналитик", разработанный в Институте кибернетики под руководством В. М. Глушкова А. А. Летичевским, Ю. В. Благовещенским, А. А. Дородницыной. Коллектив разработчиков ЭВМ МИР-1 во главе с В. М. Глушковым был отмечен Государственной премией СССР. . .На конгрессе IFIP в 1974 г. в Стокгольме В.М. Глушкову по решению Генеральной Ассамблеи IFIP была вручена специальная награда – серебряный сердечник. Так был отмечен большой вклад ученого в работу этой организации в качестве члена Программного комитета конгрессов 1965 и 1968 гг., а также в качестве Председателя Программного комитета конгресса 1971 г. В конце 70-х годов В. М. Глушков предложил принцип макроконвейерной архитектуры ЭВМ со многими потоками команд и данных (архитектура MIMD по современной классификации) как принцип реализации нефоннеймановской архитектуры. . В. М. Глушков считал, что последовательное накопление знаний, представленных в виде компьютерных баз знаний, и эффективные способы их обработки помогут людям сохранить то лучшее, что они создают, а развитие интеллектуальных способностей ЭВМ обессмертит творцов человеческой цивилизации. Эта точка зрения становится в настоящее время главной в понимании проблем современной информатики. Большое внимание В. М. Глушков уделял работам по созданию автоматизированных систем управления (АСУ) на базе применения средств вычислительной техники. Монография В. М. Глушкова "Введение в АСУ", которая была посвящена, в основном, системам организационного управления, вышла вторым изданием в 1974 г. В ней были систематизированы оригинальные результаты, полученные В. М. Глушковым в 1964—1968 гг.
В архітектурному плані машини першого і другого поколінь мали приблизно однакову структуру, зображену на Рис.11.1.
ОЗП – оперативний запам’ятовуючий пристрій ЗЗП – зовнішній запам’ятовуючий пристрій Проц – процесор ПВВ – пристрої виводу ПВ – пристрої вводу
Дані і програми вводились, зберігались (ЗЗП) і виводились за допомогою низько- швидкісних електромеханічних пристроїв. Під час роботи цих пристроїв процесор тільки частково використовував свою електронну швидкість. Тому загальна продуктивність машини була не висока. Існувала незбалансованість між високою електронною швидкістю центральної частини і низькою механічною швидкістю периферійних пристроїв. Це протиріччя було вирішено в машинах третього покоління.
11.3. Третє покоління (1965-80 рр.) В 1958 році була розроблена технологія інтегральних схем (Роберт Нойс, США), яка дозволила розміщувати в одному корпусі десятки і сотні транзисторів. Комп’ютери на таких схемах були меншого розміру, більш швидкі і коштували дешевше, ніж на транзисторах. Стрімкий розвиток комп’ютерної техніки став можливим перш за все завдяки технологічним досягненням в галузі мікроелектронних технологій. В 1965 р. Гордон Мур, в майбутньому один із засновників фірми Intel, оприлюднив свій прогноз розвитку мікроелектроніки на майбутні 10 років: кількість елементів на кристалі буде збільшуватись вдвічі кожного року. Ця функціональна залежність одержала назву – «закон Мура»(Рис.11.2). Цей закон не належить до числа «наукових» - математичних чи фізичних – законів, а являє собою вдало узагальненим досвідом шестирічного на той час випуску мікроелектронних елементів. Не зважаючи на свою емпіричність, закон Мура з деякими уточненнями заклав фундаментальний вектор розвитку чипів на 40 років, і технологи фірми Intel вважають, що він буде діяти щонайменше ще років десять.
Рис. 11. Гордон Мур та його закон Вражауючим є той факт, що на час публікації статті Мура найбільш складна інтегральна схема мала 64 транзистори, і його феноменальна прозорливість полягає якраз в тому, що на основі досить скромного досвіду, але глибокого розуміння перспектив технології, він спромігся сформулювати довготерміновий прогноз. Для ілюстрації – процесор Intel Itanium (Montecito), випущений в 2005 р., вміщує 1,7 мільярдів(!) транзисторів.
Ще одним вражаючим феноменом закону Мура є його універсальність, тобто не тільки відображення закономірностей мікроелектронних технологій, але придатність взагалі для широкого спектру сучасних високих технологій, де він також відображує тенденції експоненціального розвитку ряду явищ в сучасному суспільстві. Наприклад, зростання тактової частоти також відбувається за законом Мура (Рис.11.3). Можна сказати, що закон Мура став синонімом технологічної революції наприклад в IT-індустрії, в конвергенції обчислювальних і комунікаційних можливостей і, навіть, в біології, медицині, оптиці, сільському господарстві. Взагалі, треба зауважити, що вся світова економіка, яку вже неможливо уявити без обчислювальної техніки, базується стрімкому розвитку напівпровідникової техніки і пов’язаних з нею IT-технологіях.
Рис.11.3
Найбільш яскравим представником машин третього покоління були так званні великі ЕОМ, або мейнфрейми, американської фірми IBM – IBM-360, 370. Геніальним творцем серії цих машин був Д. Амдал. В цих машинах вперше була реалізована ідея мультипрограмної роботи, тобто виконання паралельно багатьох задач.
Дата добавления: 2014-01-04; Просмотров: 442; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |