КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Нормальный вид эрмитовых форм
Пусть f(x, y) – эрмитова форма на линейном пространстве L над полем С, F(x) – соответствующая квадратичная форма. Теорема. В L существует f- ортогональный базис. Доказательство аналогично доказательству из п.24.6. Пусть e¢ = {е1,…,еn} - f- ортогональный базис, и пусть f(еk, еk) = lk "k. Тогда в этом базисе = diag(l1,…,ln), где все lk Î R, f(x, y) = , F(x) =, и такой вид эрмитовых форм f и F называется каноническим. Следовательно, любая эрмитова полуторалинейная форма и любая эрмитова квадратичная форма эквивалентны формам канонического вида. То есть существует линейная замена координат, которая приводит произвольную эрмитову полуторалинейную форму (квадратичную форму) к каноническому виду. Пусть f(еk, еk) = lk ¹ 0 при k =1,…,r и f(еk, еk)= 0 при k = r+1,…,п. Тогда r = rg f = rgF, и r от базиса не зависит. Будем считать теперь, что форма F имеет канонический вид F(x) = l1 | х1 | 2+…+ls | xs | 2 – ls+1 | хs+1 | 2–…–ls+t | хs+t | 2, где все lk > 0, s + t = r. Пусть mk = при k = 1,…,r, mk = 1 при k = r+1,…,п. Тогда после замены координат zk = mkxk " k получим F(x)= | z1 | 2+…+ | zs | 2– | zs+1 | 2-…- | zs+t | 2 - такой вид квадратичной формы называется нормальным. Таким образом, имеет место Теорема. В линейном пространстве L над полем С для любой эрмитовой формы F существует базис, в котором форма имеет нормальный вид F(z) = z12+…+zs2– zs+12-…-zs+t2. Соответствующая эрмитова полуторалинейная форма f имеет нормальный вид f(z, w) = z1w1+…+zsws – zs+1ws+1-…- zs+tws+t. Как и в п.24.6 для эрмитовых форм F можно дать определения положительно определённой или положительной формы (F > 0), отрицательно определённой или отрицательной формы (F < 0), неотрицательно определённой формы (F ³ 0), неположительно определённой формы (F £ 0), неопределённой формы. Во всех этих случаях условия на s и t будут такие же, как и в п.24.6. По аналогии с п.24.7 для эрмитовых форм формулируется и доказывается закон инерции, определяется положительный индекс инерции формы I+(F)= s и отрицательный индекс инерции формы I -(F) = t. Так же эрмитовы квадратичные формы имеют 2 числовых инварианта I+ = s, I - = t, которые независимы и составляют полную систему инвариантов. Аналогично как и в п.24.8 формулируется и доказывается критерий Сильвестра. Необходимо лишь заметить, что угловые подматрицы эрмитовой матрицы являются эрмитовыми, а определители эрмитовых матриц Мk Î R.
Лекция 38.
Дата добавления: 2014-01-04; Просмотров: 1061; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |