![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Зоны Френеля
Как следует из принципа Гюйгенса- Френеля комплексная амплитуда волны в точке наблюдения
Рассмотрим 'механизм' формирования значения поля
Обратим внимание, что комплексная амплитуда поля, создаваемая первой зоной Френеля, определяется вектором, обозначаемым Если подвергнуть поверхность
Аналогичным образом продолжая разбиение поверхности Границам зон Френеля на спирали соответствуют диаметрально противоположные точки её витков (рис. 5.11c), каждой из которых, соответствуют определяющие её границы радиус на поверхности где
Из (5.6a), пренебрегая
С помощью этого соотношения из (5.6а) найдём В частном случае бесконечно удалённого источника от точки наблюдения ( Характерной особенностью спирали (рис. 5.11c) является положение фокуса этой кривой, на который она 'наматывается' при бесконечно большом числе зон Френеля. Покажем, что фокус располагается в центре полуокружности первого витка спирали (рис. 5.11c), т.е. величина, поля создаваемого первой зоной Френеля, в два раза больше величины поля, создаваемой источником
Действительно, пусть Как было отмечено выше, можно считать, что вклады от соседних зон примерно равны и их величины монотонно уменьшаются. По этой причине можно считать выражения в скобках в (5.7) равными нулю, т. е. имеет место равенство для любого Тогда из выражения (5.7) получим: Учитывая, что интенсивность волны пропорциональна квадрату модуля электромагнитных векторов, можно заключить, что интенсивность поля Четырёхкратное уменьшение интенсивности волны, создаваемой первой зоной Френеля, по отношению к интенсивности волны, создаваемой источником в точке наблюдения, связано с упомянутым выше противофазным вычитанием волн от различных зон Френеля на поверхности волнового фронта.
Приближённо, не принимая во внимание уменьшение интенсивности сферической волны с расстоянием, которое она проходит, в расчётах можно полагать, что величиной (5.9) определяется интенсивность волны, создаваемой каждой из зон Френеля, близкой к первой. Это является следствием равенства площадей зон Френеля, соответствующих различным значениям m. Действительно, принимая во внимание (рис. 5.13), находим площадь
и получаем, что площадь не зависит от
5. Дифракция Френеля от простейших преград. Поставим на пути сферической световой волны непрозрачный экран с круглым отверстием радиуса На продолжении этого перпендикуляра возьмем точку M и рассмотрим, что мы будем наблюдать на экране. Разобьем открытую часть волновой поверхности на зоны Френеля. Вид дифракционной картины зависит от числа зон Френеля, открываемых отверстием. Амплитуда результирующего колебания, возбуждаемого в точке М всеми зонами (9.2.1) и (9.2.2) Таким образом, когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсивность) в точке М будет больше, чем при свободном распространении волны; если четное, то амплитуда (интенсивность) будет равна нулю, как показано на рис. 9.3. Естественно, что если Дифракция от диска. Точка M лежит на перпендикуляре к центру диска. Первая зона Френеля строится от края диска и т. д. Амплитуда световых колебаний в точке M равна половине амплитуды, обусловленной первой открытой зоной. Если размер диска невелик (охватывает небольшое число зон), то действие первой зоны немногим отличается от действия центральной зоны волнового фронта. Таким образом, освещенность в точке M будет такой же, как и в отсутствие экрана. Вследствие симметрии центральная светлая точка будет окружена кольцами света и тени (вне границ геометрической тени).
Дата добавления: 2014-01-04; Просмотров: 1020; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |