Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Штерна-Герлаха опыт

Штерна—Герлаха опыт, опыт, экспериментально подтвердивший, что атомы обладают магнитным моментом, проекция которого на направление внешнего магнитного поля принимает лишь определённые значения (пространственно квантована). Осуществлен в 1922 О. Штерном и немецким физиком В. Герлахом (W. Gerlach), которые исследовали прохождение пучка атомов Ag (а затем и др. элементов) в сильно неоднородном магнитном поле (см. рис.) с целью проверки теоретически полученной формулы пространств. квантования проекции mz на направление Z магнитного момента атома mo: mz = mo m (т = 0±1,...).

На атом, обладающий магнитным моментом и движущийся в неоднородном вдоль Z магнитном поле Н, действует сила F= mz дН/дZ, которая отклоняет его от первоначального направления движения. Если проекция магнитного момента атома могла бы изменяться непрерывно, то на пластинке П наблюдалась бы размытая широкая полоса. Однако в Ш.— Г. о. было обнаружено расщепление пучка атомов на 2 компоненты, симметрично смещенные относительно первичного направления распространения на величину D — на пластинке появлялись две узкие полосы. Это указывало на то, что проекция магнитного момента атома mz на направление поля Н принимает только два отличающиеся знаком значения ±mo, т. е. mo ориентируется вдоль Н и в противоположном направлении. Величина магнитного момента атома mо, измеренная в опыте по смещению D, оказалась равной Бора магнетону.

Ш.—Г. о. сыграл большую роль в дальнейшем развитии представлений об электроне. Согласно квантовой теории Бора — Зоммерфельда, орбитальный и, следовательно, магнитный моменты используемых в опыте атомов с одним электроном во внешней оболочке равны нулю, поэтому такие атомы не должны были бы вообще отклоняться магнитным полем. Ш.—Г. о., показавший, что эти атомы вопреки теории обладают магнитным моментом, а также другие более ранние эксперименты привели в 1925 Дж. Ю. Уленбека и С. Гаудсмита к гипотезе существования собственного механического момента электрона — спина.


 

37. Спин - специфический квантовый момент движения элементарной частицы (электрона, протона, нейтрона) или ядра атома.

где sспиновое квантовое число.

Аналогично, проекция спина на ось z (Lsz) (ось z совпадает с направлением внешнего магнитного поля) должна быть квантована и вектор может иметь (2 s + 1) различных ориентаций в магнитном поле.

Из опытов Штерна и Герлаха следует, что таких ориентаций всего две: 2s+1=2, а значит s = 1/2, т.е. спиновое квантовое число имеет только одно значение.

Для атомов первой группы, валентный электрон которых находится в s- состоянии (l = 0), момент импульса атома равен спину валентного электрона. Поэтому обнаруженное для таких атомов пространственное квантование момента импульса в магнитном поле является доказательством наличия у спина лишь двух ориентаций во внешнем поле. (Опыты с электронами в p- состоянии подтвердили этот вывод, хотя картина получилась более сложной) (желтая линия натрия – дуплет из-за наличия спина).

Численное значение спина электрона:.

По аналогии с пространственным квантованием орбитального момента проекция спина квантуется (аналогично, как , то и ). Проекция спина на направление внешнего магнитного поля, являясь квантовой величиной, определяется выражением:

,

где – магнитное спиновое квантовое число, , т.е. может принимать только два значения, что и наблюдается в опыте Штерна и Герлаха.

Итак, проекция спинового механического момента импульса на направление внешнего

магнитного поля может принимать два значения:

Так как мы всегда имеем дело с проекциями, то говоря, что спин имеет две

ориентации, имеем в виду две проекции.

Проекция спинового магнитного момента электрона на направление внешнего магнитного поля:

.

Отношение спиновое гиромагнитное отношение.


 

<== предыдущая лекция | следующая лекция ==>
Атом водорода | Квантовые числа
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 351; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.