КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Логическая сумма и логическое произведение
Сложение понятий – это логическая операция объединения двух и более понятий, в результате которой образуется новое понятие с объёмом, охватывающим собой все элементы объёмов исходных понятий. Например, при сложении понятий «школьник» (Ш) и «спортсмен» (С) образуется новое понятие, в объём которого входят как все школьники, так и все спортсмены. Результат сложения понятий, часто называемый логической суммой, на схеме Эйлера изображается штриховкой (рис. 16). Умножение понятий – это логическая операция объединения двух и более понятий, в результате которой образуется новое понятие с объёмом, охватывающим собой только совпадающие элементы объёмов исходных понятий. Например, при умножении понятий «школьник» (Ш) и «спортсмен» (С) образуется новое понятие, в объём которого входят только школьники, являющиеся спортсменами, и спортсмены, являющиеся школьниками. Результат умножения понятий, часто называемый логическим произведением, на схеме Эйлера изображается штриховкой (так же, как и результат сложения) (рис. 17). Мы привели примеры сложения и умножения понятий, которые находятся между собой в отношении пересечения: «школьник» и «спортсмен». При других отношениях между понятиями результаты сложения и умножения (логическая сумма и логическое произведение), разумеется, будут иными. Вприводимой ниже табл. 3 штриховкой показаны результаты сложения и умножения понятий во всех видах отношений между ними. Результаты сложения понятий во всей первой строке табл. 3 (в равнозначности, пересечении и подчинении) полностью совпадают с результатами сложения во всей третьей строке табл. 3 (в соподчинении, противоположности и противоречии). А результаты умножения понятий во всей второй строке табл. 3 (в равнозначности, пересечении и подчинении), наоборот, полностью не совпадают с результатами умножения во всей четвёртой строке табл. 3 (в соподчинении, противоположности и противоречии). Кроме того, результаты сложения понятий, при сравнении их с результатами умножения, полностью совпадают только в случае равнозначности, частично – в пересечении и совершенно не совпадают в соподчинении, противоположности и противоречии (в этих трёх случаях результатом умножения является нулевое или пустое понятие). В отношении подчинения результатом сложения является родовое понятие, а умножения – видовое. Как правило, в естественном языке (том, на котором мы общаемся) результат сложения понятий выражается союзом «или», а умножения – союзом «и». В результате сложения понятий «школьник» и «спортсмен» образуется новое понятие, в объём которого входит любой человек, если он является или школьником, или спортсменом, а в результате умножения этих понятий в объём нового понятия входит любой человек, если он является и школьником, и спортсменом одновременно. О возможных разночтениях при употреблении союзов «или » и «и » говорит Виталий Иванович Свинцов в уже упоминавшемся нами учебнике по логике: «Что касается союзов «или» и «и», то нужно отметить их многозначность, способную в известных ситуациях создавать достаточно неопределённое представление о характере связи между некоторыми исходными понятиями. Удачна ли, например, следующая формулировка одного из правил пользования городским транспортом: «Безбилетный проезд и бесплатный провоз багажа наказывается штрафом»? Представим себе два подмножества, которые могут быть выделены во множестве пассажиров-нарушителей. В одно из них войдут пассажиры, не взявшие билета, в другое – не оплатившие провоз багажа. Если союз «и» рассматривать как показатель логического умножения, то придётся признать, что штраф должен быть наложен только на тех пассажиров, которые совершили сразу два проступка (но не какой-то один из них). Разумеется, житейский смысл ситуации, предусмотренной данным правилом, настолько ясен, что всякие разночтения этой формулировки, вероятно, были бы признаны казуистикой, но всё же использование союза «или» здесь следует признать предпочтительным»[3].
Проверьте себя: 1. Что такое логическая сумма и логическое произведение? 2. Возьмите три пары каких-нибудь понятий и проделайте с ними логические операции сложения и умножения, иллюстрируя их результаты с помощью круговых схем Эйлера. 3. Каковы результаты сложения и умножения понятий во всех случаях отношений между ними? Могут ли эти результаты полностью совпадать? Может ли логическая сумма или логическое произведение быть нулевым понятием? 4. Какой союз естественного языка является, как правило, выражением результата сложения понятий, какой – умножения? Проиллюстрируйте свой ответ самостоятельно подобранными примерами. Глава 2
Дата добавления: 2014-01-04; Просмотров: 1497; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |