КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция. Измерения частоты, временных интервалов и фазы
Средства измерений количества электричества Для измерения количества электричества применяют баллистические гальванометры, кулонметры и счетчики ампер-часов. Все эти приборы включают последовательно в цепь измеряемого тока либо непосредственно, либо с помощью шунта. Баллистические гальванометры применяют для измерения малых количеств электричества, протекающих в течение коротких промежутков времени. Погрешность измерения количества электричества баллистическим гальванометром может составлять ±(5—10) %. Кулонметры служат для измерения количества электричества в импульсах тока. Приведенная погрешность измерения кулонметром не превышает ±5 %. Особенностью работы кулонметра является необходимость постоянства амплитуды импульса измеряемого тока. Счетчики ампер-часов применяют для измерения количества электричества, протекающего в течение длительного времени. Их используют, например, для учета количества электричества, протекающего в цепи нагрузки аккумуляторных батарей, для учета количества электричества в электролизных цехах и т.п. Приведенная погрешность магнитоэлектрических счетчиков ампер-часов не превышает ±0,5%. Приведенная погрешность электронных счетчиков ампер-часов не более ±1 %.
Дополнительную информацию по теме можно получить в [4,6,8,9,12,13]. Содержание лекции: - государственный первичный эталон единиц времени и частоты; государственный специальный эталон угла фазового сдвига; метод фигур Лиссажу. Цель лекции: - изучить основные методы и средства измерений частоты, временных интервалов и фазы. При научных исследованиях и в производственной практике часто встречается необходимость измерения частоты, временных интервалов, фазового сдвига между напряжением и током нагрузки в цепях промышленной частоты и между периодическими напряжениями одинаковой частоты любой формы. Диапазон частот периодических сигналов, используемых в различных областях науки и техники, очень широк — от долей герца до десятков гигагерц. Весь спектр частот электромагнитных колебаний делят на два диапазона – низких и высоких частот. К низким частотам относят инфразвуковые (ниже 20 Гц), звуковые (20-20 000 Гц) и ультразвуковые (20—200 кГц). Высокочастотный диапазон, в свою очередь, разделяют на высокие частоты (200 кГц — 30 МГц), ультравысокие (30—300 МГц) и сверхвысокие (выше 300 МГц). Измерения частоты в высокочастотном диапазоне (ультра- и сверхвысокие частоты) относят к радиоизмерениям. Измерение частоты по сравнению с измерениями других физических величин возможно с очень большой точностью, обусловленной высокой помехозащищенностью частотного сигнала и возможностью преобразования частоты с большой точностью в цифровой код. Погрешность измерения частоты зависит от используемых средств и методов измерений и различна для разных диапазонов частот. Временной интервал отличается многообразием форм представления. Так, временной интервал может быть в виде периода синусоидальных колебаний, периода следования импульсов, интервала между двумя импульсами, в виде длительности импульса и т. п. Диапазон измеряемых временных интервалов очень широк: от долей микросекунды до десятков часов и более. В некоторых случаях частота и время связаны между собой обратно пропорциональной зависимостью и могут быть измерены с одинаковой точностью. Предельная точность измерений временных интервалов и частоты определяется точностью государственного первичного эталона, обеспечивающего воспроизведение единиц времени и частоты со средним квадратическим отклонением результата измерения, не превышающим при неисключенной систематической погрешности, не превышающей . Диапазон измерения угла фазового сдвига составляет . Некоторые средства измерений градуируют не в единицах угла сдвига, а в безразмерных единицах коэффициента мощности - для синусоидальных напряжений (токов) или - для несинусоидальных напряжений (токов), где и - активная и полная мощность соответственно; (или ) измеряют в диапазоне от 0 до 1. Точность измерения угла фазового сдвига зависит от частоты напряжений (токов), фазовый сдвиг между которыми измеряется, а также от применяемых средств и методов измерений. Предельная точность измерений угла фазового сдвига определяется государственным специальным эталоном угла фазового сдвига между двумя электрическими напряжениями в диапазоне частот 1•10— 2•10 Гц, обеспечивающим воспроизведение единицы со средним квадратическим отклонением результата измерения от 0,3•10до 10•10градуса в зависимости от измеряемой величины. Диапазоны измерений частоты, длительностей электрических импульсов, угла фазового сдвига и коэффициента мощности, а также наименьшая погрешность, достигаемая с помощью средств измерений, выпускаемых отечественной промышленностью, приведены в приложении Ж (таблица Ж2). Измерение частоты. В зависимости от диапазона измерений и требуемой точности используют различные средства и методы измерений. Для измерения частоты в узком диапазоне (45—55; 450— 550 Гц и т. д.) при наибольшей частоте 2500 Гц применяют электродинамические и электромагнитные частотомеры. Классы точности электродинамических частотомеров — 1; 1,5; электромагнитных частотомеров — 1,5; 2,5. Для измерения низкой частоты в узком диапазоне (48—52; 45—55 Гц и т. д.) могут применяться резонансные частотомеры. Класс точности таких частотомеров 1—2,5. В диапазоне высоких и сверхвысоких частот частота может измеряться высокочастотными резонансными частотомерами, в которых, в отличие от электромеханических резонансных частотомеров, используется колебательный контур из катушки индуктивности и конденсатора. Погрешность измерения частоты в этом случае составляет ± (0,05—0,1) %. Для измерения частоты в широком диапазоне (от 10 Гц до нескольких мегагерц) могут применяться электронные аналоговые частотомеры. Класс точности 0,5—2,5. Для измерения частоты электрических сигналов получил распространение метод сравнения, отличающийся относительной простотой, сравнительно высокой точностью и пригодностью для использования в широком диапазоне частот. Измеряемая частота определяется по равенству или кратности известной частоте. Индикатором равенства иди кратности частот может служить электронный осциллограф. Этот способ измерения частоты пригоден для измерения частот в пределах полосы пропускания электронно-лучевой трубки. Измерение частоты можно производить при линейной, синусоидальной и круговой развертках. Более точные результаты могут быть получены при сравнении двух колебаний синусоидальной формы методом фигур Лиссажу. На одну из пар отклоняющих пластин осциллографа подают синусоидальное напряжение известной частоты, а на другую — исследуемое напряжение. Изменяя известную частоту, добиваются получения кривой на экране в виде неподвижной или медленно перемещающейся фигуры Лиссажу. По виду фигуры Лиссажу судят о частоте и фазовом сдвиге исследуемого напряжения. В приложении З на рисунке З1 показаны фигуры Лиссажу для нескольких соотношений частот и углов фазового сдвига. Кратность частот при любой форме неподвижного изображения фигуры определяют по числу пересечений изображений фигуры горизонтальной п и вертикальной п линиями. Отношение , где и — частоты напряжений, поданных на горизонтально и вертикально отклоняющие пластины соответственно. Если напряжение измеряемой частоты , подано на вертикально отклоняющие пластины, а напряжение известной, образцовой, частоты — на горизонтально отклоняющие пластины, то . Этот метод применяют лишь при относительно небольшой кратности частот, обычно не превышающей 10, так как в противном случае фигуры Лиссажу становятся запутанными и с трудом поддаются расшифровке. При большей кратности сравниваемых частот предпочтительным оказывается метод круговой развертки. В этом случае два равных напряжения Ux, UY низкой частоты fx с фазовым сдвигом 90° подают на оба входа осциллографа. Под действием этих напряжений луч на экране описывает окружность с частотой напряжений Ux, UY. Напряжение измеряемой частоты подают к электроду, модулирующему яркость элек-тронного луча (канал Z). При кратности частот на экране будет изображение в виде штриховой линии. Число темных или светлых штрихов п равно кратности частот, откуда . При круговой развертке сравнивать частоты можно до кратности 50, а при фотографировании осциллограммы — до нескольких сотен. Погрешность осциллографических методов измерения частоты определяется главным образом погрешностью определения и может быть доведена до - . В последнее время перечисленные методы и средства измерений частоты все более вытесняются измерением с помощью цифровых частотомеров. Выпускаемые промышленностью цифровые частотомеры могут измерять частоту в диапазоне от 0,01 Гц до 17 ГГц. Погрешность цифровых частотомеров главным образом зависит от нестабильности образцового (кварцевого) генератора и меняется от 10 до 5-10. Измерение временных интервалов. Для измерения временных интервалов применяют электронно-лучевые осциллографы и цифровые измерители временных интервалов. При применении электронно-лучевого осциллографа временной интервал измеряют, используя метки времени калибратора с периодом длительности , либо учитывая коэффициент развертки . Результат измерения в первом случае определяется по формуле , где п — число меток, находящихся в пределах измеряемого временного интервала. Во втором случае на экране осциллографа определяют временной интервал в делениях шкалы и результат рассчитывают по формуле . Погрешность измерения временных интервалов в этом случае = 5- 10 %. Цифровые приборы для измерения временных интервалов являются наиболее точными при измерении относительно больших интервалов (миллисекунды и более). При измерении малых интервалов времени погрешность дискретности, определяемая конечным значением частоты заполнения, может оказаться значительной. Для уменьшения этой погрешности применяют способ растяжения измеряемого интервала в определенное число раз, а при измерении периода колебаний – способ усреднения. Измерение фазового сдвига. Для измерения фазового сдвига между напряжением и током нагрузки в цепях промышленной частоты применяют электродинамические фазометры классов точности 0,2; 0,5. Большое распространение получили цифровые фазометры, имеющие частотный диапазон входных напряжений до 150 МГц. Приведенная погрешность цифровых фазометров ±(0,1 — 0,5) %. Для измерения фазового сдвига применяют электронно-лучевые осциллографы. Проще всего измерения фазового сдвига выполняют с помощью двухлучевых или двухканальных осциллографов. В этом случае на экране получают изображение двух напряжений, что дает возможность измерить временной сдвиг между напряжениями и период и оценить фазовый сдвиг (в градусах) по формуле . Погрешность измерения определяется погрешностью измерения и и может достигать ±(5-10) %. Фазовый сдвиг может быть измерен также с использованием фигур Лиссажу. В приложении З на рисунке З2 показаны фигуры Лиссажу, получающиеся при подаче на два входа X и У осциллографа двух синусоидальных напряжений и одинаковой частоты при разных фазовых сдвигах. Значение фазового сдвига , где А и Б—отрезки осей координат, определяемые по изображению. Погрешность определения фазового сдвига равна ± (5-10) %.
Дополнительную информацию по теме можно получить в [4,6,8,12,13].
Дата добавления: 2014-01-04; Просмотров: 2245; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |