Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные задачи математической статистики и ее применение в психолого-педагогических науках. Шкалирование, виды шкал их различие и способы их организации




ЛЕЙБОВСКИЙ М.А.

«МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Курс лекций для студентов
Психоло-педагогических специальностей


Данный курс лекций основан на материале прочитанных автором лекций в различных вузах Москвы и на материале учебной литературы, список которой приведен в конце.


ОГЛАВЛЕНИЕ

1. ОСНОВНЫЕ ЗАДАЧИ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ И ЕЕ ПРИМЕНЕНИЕ В ПСИХОЛОГО-ПЕДАГОГИЧЕСКИХ НАУКАХ. ШКАЛИРОВАНИЕ, ВИДЫ ШКАЛ ИХ РАЗЛИЧИЕ И СПОСОБЫ ИХ ОРГАНИЗАЦИИ. 4

Измерительные шкалы.. 11

2. ПРОГРАММНЫЕ ПРОДУКТЫ (ППП) ДЛЯ ОБРАБОТКИ ПСИХОЛОГО-ПЕДАГОГИЧЕСКОЙ И СОЦИОЛОГИЧЕСКОЙ ИНФОРМАЦИИ. 21

3. СТАТИСТИЧЕСКИЙ АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ. МЕТОДЫ ПЕРВИЧНОЙ ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА.. 25

4. ОСНОВНЫЕ ПОНЯТИЯ, ИСПОЛЬЗУЕМЫЕ В МАТЕМАТИЧЕСКОЙ ОБРАБОТКЕ ПСИХОЛОГИЧЕСКИХ ДАННЫХ.. 34

5. СТАТИСТИЧЕСКИЕ ГИПОТЕЗЫ.. 36

6. ВЫЯВЛЕНИЕ РАЗЛИЧИЙ В УРОВНЕ ИССЛЕДУЕМОГО ПРИЗНАКА.. 36

7. ОЦЕНКА ДОСТОВЕРНОСТИ СДВИГА В ЗНАЧЕНИЯХ ИССЛЕДУЕМОГО ПРИЗНАКА.. 36

8. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ. 36

9. ФАКТОРНЫЙ И КЛАСТЕРНЫЙ АНАЛИЗ. ФАКТОРНЫЙ АНАЛИЗ. 36

Литература. 36

ОБРАЗОВАТЕЛЬНЫЕ ИНТЕРНЕТ РЕСУРСЫ.. 36

 


 

Исследование в любой области, в том числе и в психологии, предполагает получение результатов — обычно в виде чисел. Однако просто собрать данные недостаточно. Даже объективно и корректно собранные данные ничего не говорят. Исследователю необходимо умение организовать их, обработать и проинтерпретировать, что невозможно без знания основ статистики, применения математических методов. Конечно, можно сослаться на наличие современных компьютерных программ, применение которых сейчас становится нормой для исследователя. Но любая программа обработки данных переводит один набор чисел в другой набор чисел. При этом предлагается богатый набор способов такого преобразования, замечательным образом расширяющий возможности анализа данных. И для использования этих возможностей психолог должен уметь:

а) организовать исследование так, чтобы его результаты были доступны обработке в соответствии с проблемами исследования;

б) правильно выбрать метод обработки;

в) содержательно интерпретировать результаты обработки.

Эти умения не заменят ни компьютерная программа, ни математик и программист, придумавшие и написавшие данную программу. Таким образом, применение математики как общенаучного метода, наряду с экспериментом, неизбежно приобретает в психологии свои особенности, связанные со спецификой предмета.

При этом соотношение обыденного и научного познания приведено на рис. 1.

Рис. 1. Соотношение обыденного и научного познания.

 

Иными словами – необходимо научиться отвечать на самый простой и вечный вопрос: «Да» или «Нет». Только что «Да» и что «Нет». Например, есть ли разница в уровне тревожности до и после тренинга, есть ли зависимость между теми или иными признаками и т.д. И самое главное – насколько можно верить сделанным утверждениям и какова цена ошибки. Именно поэтому неотъемлемой частью подготовки полноценного специалиста-психолога является изучение не только экспериментальной психологии, но и математических методов психологического исследования.

Существует мнение, неоднократно высказывавшееся крупными учеными прошлого: область знания становится наукой, лишь применяя математику. С этим мнением, возможно, не согласятся многие гуманитарии. А зря: именно математика позволяет количественно сравнивать явления, проверять правильность словесных утверждений и тем самым добираться до истины либо приближаться к ней. Математика делает обозримыми длинные и подчас туманные словесные описания, проясняет и экономит мысль.

Математические методы позволяют обоснованно прогнозировать будущие события, вместо того, чтобы гадать на кофейной гуще или как-либо иначе. В общем, польза от применения математики велика, но и труда на ее освоение требуется много. Однако он окупается сполна.

Психология в своем научном становлении неизбежно должна была пройти и прошла путь математизации, хотя не во всех странах и не в полной мере. Точной даты начала пути математизации, пожалуй, не знает ни одна наука. Однако для психологии в качестве условной даты начала этого пути можно принять 18 апреля 1822 г. Именно тогда в Королевском немецком научном обществе Иоганн Фридрих Гербарт прочел доклад «О возможности и необходимости применять в психологии математику». Основная идея доклада сводилась к упомянутому выше мнению: если психология хочет быть наукой, подобно физике, в ней нужно и можно применять математику.

Спустя два года после этого программного по своей сути доклада И. Ф. Гербарт издал книгу «Психология как наука, заново основанная на опыте, метафизике и математике». Эта книга примечательна во многих отношениях. Она явилась первой попыткой создания психологической теории, опирающейся на тот круг явлений, которые непосредственно доступны каждому субъекту, а именно на поток представлений, сменяющих друг друга в сознании. Никаких эмпирических данных о характеристиках этого потока, полученных, подобно физике, экспериментальным путем, тогда не существовало. Поэтому Гербарт в отсутствие этих данных, как он сам писал, должен был придумывать гипотетические модели борьбы всплывающих и исчезающих в сознании представлений. Облекая эти модели в аналитическую форму, например φ =α(l-exp[-βt]),где t—время, φ—скорость изменения представлений, α и β — константы, зависящие от опыта, Гербарт, манипулируя числовыми значениями параметров, пытался описать возможные характеристики смены представлений.

По-видимому, И. Ф. Гербарту первому принадлежит мысль о том, что свойства потока сознания — это величины и, следовательно, они в дальнейшем развитии научной психологии подлежат измерению. Ему также принадлежит идея «порога сознания», и он первый употребил выражение «математическая психология».

У И. Ф. Гербарта в Лейпцигском университете нашелся ученик и последователь, позднее ставший профессором философии и математики, — Мориц-Вильгельм Дробиш. Он воспринял, развил и по-своему реализовал программную идею учителя. В словаре Брокгауза и Ефрона о Дробише сказано, что еще в 30-х годах Х1Х века он занимался исследованиями по математике и психологии и публиковался на латинском языке. Но в 1842 г. М.В.Дробиш издал в Лейпциге на немецком языке монографию под недвусмысленным названием: «Эмпирическая психология согласно естественнонаучному методу».

Книга М.-В. Дробиша дает замечательный пример первичной формализации знаний в области психологии сознания. Там нет математики в смысле формул, символики и расчетов, но там есть четкая система понятий о характеристиках потока представлений в сознании как взаимосвязанных величинах. Уже в предисловии М.-В. Дробиш написал, что эта книга предваряет другую, уже готовую, — имеется в виду книга по математической психологии. Но поскольку его коллеги-психологи недостаточно подготовлены в математике, постольку он счел необходимым продемонстрировать эмпирическую психологию сначала безо всякой математики, а лишь на твердых естественнонаучных основах.

Лишь через восемь лет, в 1850 г. в Лейпциге вышла в свет вторая основополагающая книга М.-В. Дробиша—«Первоосновы математической психологии». Таким образом, у этой психологической дисциплины тоже есть точная дата появления в науке. Некоторые современные психологи, пишущие в области математической психологии, ухитряются начинать ее развитие с американского журнала, появившегося в 1963 г. Воистину, «все новое — это хорошо забытое старое». Целое столетие до американцев развивалась математическая психология, точнее — математизированная психология. И начало процессу математизации нашей науки положили И. Ф. Гербарт и М.-В. Дробиш.

Надо сказать, что по части новаций математическая психология Дробиша уступает сделанному его учителем — Гербартом. Правда, Дробиш к двум борющимся в сознании представлениям добавил третье, а это сильно усложнило решения. Но главное, по-моему, в другом. Большую часть объема книги составляют примеры численного моделирования. К сожалению, ни современники, ни потомки не поняли и не оценили научного подвига, совершенного М.-В. Дробишем: у него ведь не было компьютера для численного моделирования. А в современной психологии математическое моделирование — это продукт второй половины XX века. В предисловии к нечаевскому переводу гербартианской психологии российский профессор А. И. Введенский, знаменитый своей «психологией без всякой метафизики», весьма пренебрежительно отозвался о попытке Гербарта применять в психологии математику. Но не такова была реакция естествоиспытателей. И психофизики, в частности Теодор Фехнер, и знаменитый Вильгельм Вундт, работавшие в Лейпциге, не могли пройти мимо основополагающих публикаций И.Ф.Гербартаи М.-В. Дробиша. Ведь именно они математически реализовали в психологии идеи Гербарта о психологических величинах, порогах сознания, времени реакций сознания человека, причем реализовали с использованием современной им математики.

Основные методы тогдашней математики—дифференциальное и интегральное исчисления, уравнения сравнительно несложных зависимостей — оказались вполне пригодными для выявления и описания простейших психофизических законов и различных реакций человека. Но они не годились для изучения сложных психических явлений и сущностей. Не зря В.Вундт категорически отрицал возможность эмпирической психологии исследовать высшие психические функции. Они оставались, по Вундту, в ведении особой, по сути метафизической, психологии народов.

Математические средства для изучения сложных многомерных объектов, в том числе высших психических функции — интеллекта, способностей, личности, стали создавать англоязычные ученые. Среди других результатов оказалось, что рост потомков как бы стремится возвратиться к среднему росту предков. Появилось понятие «регрессия», и были получены уравнения, выражающие эту зависимость. Был усовершенствован коэффициент, раньше предложенный французом Бравэ. Этот коэффициент количественно выражает соотношение двух изменяющихся переменных, т. е. корреляцию. Теперь этот коэффициент — одно из важнейших средств многомерного анализа данных, даже символ сохранил аббревиатурный: малое латинское «r» от английского relation — отношение.

Еще будучи студентом Кембриджа, Фрэнсис Гальтон заметил, что рейтинг успешности сдачи экзаменов по математике, а это был выпускной экзамен, —- изменяется от нескольких тысяч до немногих сотен баллов. Позднее, связав это с распределением талантов, Гальтон пришел к мысли о том, что специальные испытания позволяют прогнозировать дальнейшие жизненные успехи людей. Так в 80-х гг. XIX века родился гальтоновский метод тестов.

Идею тестов подхватили и развили французы А. Бит, В. Анри и другие, создавшие первые тесты для селекции социально отсталых детей. Это послужило началом психологической тестологии, что, в свою очередь, повлекло за собой развитие психологических измерений.

Большие массивы числовых результатов измерений по тестам— в баллах, стали объектом многочисленных исследований, в том числе математико-психологических. Особая роль здесь принадлежит английскому инженеру, работавшему в Америке, —Чарльзу Спирмену.

Во-первых, Ч. Спирмен, полагавший, что для вычисления корреляции между рядами целочисленных баллов, или рангов, нужна специальная мера, перепробовав разные варианты (1904 г.), остановился, наконец, на той форме коэффициента корреляции рангов, которая с тех пор носит его имя.

Во-вторых, имея дело с большими массивами числовых результатов по тестам и корреляций между этими результатами, Ч. Спирмен предположил, что эти корреляции вовсе не выражают взаимовлияние результатов, а эксплицируют их совместную изменчивость под влиянием обшей латентной психической причины, или фактора, например интеллекта. Соответственно этому Спирмен предложил теорию «генерального» фактора, определяющего совместную изменчивость переменных тестовых результатов, а также разработал метод выявления этого фактора по корреляционной матрице. Это был первый метод факторного анализа, созданный в психологии и для психологических целей.

У однофакторной теории Ч. Спирмена быстро нашлись оппоненты. Противоположную, многофакторную теорию, объясняющую корреляции, предложил Леон Терстоун. Ему же принадлежит первый метод мультифакторного анализа, основанный на применении линейной алгебры. После Ч. Спирмена и Л. Терстоуна факторный анализ, не только стал одним из важнейших математических методов многомерного анализа данных в психологии, но и вышел далеко за ее пределы, превратился в общенаучный метод анализа, данных.

С конца 20-х г.г. XX века математические методы все шире проникают в психологию и творчески используются в ней. Интенсивно развивается психологическая теория измерений. На основе аппарата цепей Маркова разрабатываются стохастические модели научения в психологии поведения. Созданный в области биологии Рональдом Фишером дисперсионный анализ становится основным математическим методом в генетической психологии. Математические модели из теории автоматического регулирования и шенноновская теория информации широко применяются в инженерной и общей психологии. В итоге современная научная психология во многих своих отраслях математизирована значительным образом (следует отметить, что многие современные ученые-психологи в качестве первого базового образования имеют математическое или техническое). При этом вновь появляющиеся математические новации нередко заимствуются психологами для своих целей. К примеру, появление алгоритмического языка для задач управления, предложенного А. А. Ляпуновым и Г. А. Шестопалом, почти сразу же было использовано В.Н.Пушкиным для составления алгоритмов деятельности железнодорожного диспетчера.

Любой вид измерения предполагает наличие единиц измерения Единица измерения это та «измерительная палочка», как говорил С. Стивнес, которая является условным эталоном для осуществления тех или иных измерительных процедур. В естественных науках и технике существуют стандартные единицы измерения, например, градус, метр, ампер и т.д.

Психологические переменные за единичными исключениями не имеют собственных измерительных единиц. Поэтому в большинстве случаев значение психологического признака определяется при помощи специальных измерительных шкал.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 653; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.