Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные понятия трехмерной графики




Фрактальная графика

Фрактальная графика, как и векторная, основана на математических вычислениях. Однако базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям. Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты (рис. 15.6).

Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов. В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования — создание подвижного изображения реального физического тела.

В упрощенном виде для пространственного моделирования объекта требуется:

• спроектировать и создать виртуальный каркас («скелет») объекта, наиболее полно соответствующий его реальной форме;

• спроектировать и создать виртуальные материалы, по физическим свойствам визуализации похожие на реальные;

• присвоить материалы различным частям поверхности объекта (на профессио­нальном жаргоне — «спроектировать текстуры на объект»);

• настроить физические параметры пространства, в котором будет действовать объект, — задать освещение, гравитацию, свойства атмосферы, свойства взаимодействующих объектов и поверхностей;

• задать траектории движения объектов;

• рассчитать результирующую последователь­ность кадров;

• наложить поверхностные эффекты на итого­вый анимационный ролик.

Для создания реалистичной модели объекта используют геометрические примитивы (прямоуголь­ник, куб, шар, конус и прочие) и гладкие, так назы­ваемые сплайновые поверхности. В последнем случае применяют чаще всего метод бикубических рациональных В-сплайнов на неравномерной сетке (NURBS). Вид поверхности при этом определя­ется расположенной в пространстве сеткой опор­ных точек. Каждой точке присваивается коэф­фициент, величина которого определяет степень

ее влияния на часть поверхности, проходящей вблизи точки. От взаимного распо­ложения точек и величины коэффициентов зависит форма и «гладкость» поверх­ности в целом. Специальный инструментарий позволяет обрабатывать примитивы, составляющие объект, как единое целое, с учетом их взаимодействия на основе заданной физической модели.

Деформация объекта обеспечивается перемещением контрольных точек, располо­женных вблизи. Каждая контрольная точка связана с близлежащими опорными точками, степень ее влияния на них определяется удаленностью. Другой метод назы­вают сеткой деформации. Вокруг объекта или его части размещается трехмерная сетка, перемещение любой точки которой вызывает упругую деформацию как самой сетки, так и окруженного объекта.

Еще одним способом построения объектов из примитивов служит твердотельное моделирование. Объекты представлены твердыми телами, которые при взаимодействии с другими телами различными способами (объединение, вычитание, слияние и другие) претерпевают необходимую трансформацию. Например, вычитание из прямоуголь­ного параллелепипеда шара приведет к образованию в параллелепипеде полукруглой лунки.

После формирования «скелета» объекта необходимо покрыть его поверхность мате­риалами. Все многообразие свойств в компьютерном моделировании сводится к визуализации поверхности, то есть к расчету коэффициента прозрачности поверх­ности и угла преломления лучей света на границе материала и окружающего про­странства. Для построения поверхностей материалов используют пять основных физических моделей:

Bouknigfit — поверхности с диффузным отражением без бликов (например, мато­вый пластик);

Phong — поверхности со структурированными микронеровностями (например, металлические);

ВИпп — поверхности со специальным распределением микронеровностей с уче­том взаимных перекрытий (например, глянец);

Whitted — модель, позволяющая дополнительно учитывать поляризацию света;

Hall — модель, позволяющая корректировать направления отражения и пара­метры преломления света.

Закраска поверхностей осуществляется метода­ми Гуро (Gouraud) или Фонга (Phong). В пер­вом случае цвет примитива рассчитывается лишь в его вершинах, а затем линейно интер­полируется по поверхности. Во втором случае строится нормаль к объекту в целом, ее вектор интерполируется по поверхности составляю­щих примитивов и освещение рассчитывается для каждой точки.

Свет, уходящий с поверхности в конкретной точке в сторону наблюдателя, пред­ставляет собой сумму компонентов, умноженных на коэффициент, связанный с материалом и цветом поверхности в данной точке. К таковым компонентам отно­сятся:

• свет, пришедший с обратной стороны поверхности, то есть преломленный свет (Refracted)',

свет, равномерно рассеиваемый поверхностью (Diffuse)',

зеркально отраженный свет (Reflected)',

блики, то есть отраженный свет источников (Specular)',

собственное свечение поверхности (Self Illumination).

Свойства поверхности описываются в создаваемых массивах текстур (двух- или трехмерных). Таким образом, в массиве содержатся данные о степени прозрачности материала; коэффициенте преломления; коэффициентах смещения компонентов (их список указан выше); цвете в каждой точке, цвете блика, его ширине и резкости; цвете рассеянного (фонового) освещения; локальных отклонениях векторов от нормали (то есть, учитывается шероховатость поверхности).

Следующим этапом является наложение («проектирование») текстур на опреде­ленные участки каркаса объекта. При этом необходимо учитывать их взаимное вли­яние на границах примитивов. Проекти­рование материалов на объект — задача трудно формализуемая, она сродни худо­жественному процессу и требует от испол­нителя хотя бы минимальных творческих способностей.

Из всех параметров пространства, в котором действует создаваемый объект, с точки зрения визуализации самым важным является определение источников света. В трехмерной графике принято использовать виртуальные эквиваленты физичес­ких источников.

• Аналогом равномерного светового фона служит так называемый растворен­ный свет (Ambient Light). Он не имеет геометрических параметров и характе­ризуется только цветом и интенсивностью. Пример в природе — естественная освещенность вне видимости Солнца и Луны.

• Удаленный не точечный источник называют удаленным светом (Distant Light). Ему присваиваются конкретные геометрические параметры (координаты). Ана­лог в природе — Солнце.

• Точечный источник света (Point Light Source) равномерно испускает свет во всех направлениях и также имеет координаты. Аналог в технике — электри­ческая лампочка.

• Направленный источник света (Direct Light Source) кроме местоположения харак­теризуется направлением светового потока, углами раствора полного конуса света и его наиболее яркого пятна. Аналог в технике — прожектор.

После завершения конструирования и визуализации объекта приступают к его «оживлению», то есть заданию параметров движения. Компьютерная анимация базируется на ключевых кадрах. В первом кадре объект выставляется в исходное положение. Через определенный промежуток (например, в восьмом кадре) задается новое положение объекта и так далее до конечного положения. Промежуточные значения вычисляет программа по специальному алгоритму. При этом происхо­дит не просто линейная аппроксимация, а плавное изменение положения опорных точек объекта в соответствии с заданными условиями (рис. 15.7).

Эти условия определяются иерархией объектов (то есть законами их взаимодей­ствия между собой), разрешенными плоскостями движения, предельными углами поворотов, величинами ускорений и скоростей. Такой подход называют методом инверсной кинематики движения. Он хорошо работает при моделировании меха­нических устройств. В случае с имитацией живых объектов используют так назы­ваемые скелетные модели. То есть, создается некий каркас, подвижный в точках, характерных для моделируемого объекта. Движения точек просчитываются пре­дыдущим методом. Затем на каркас накладывается оболочка, состоящая из смодели­рованных поверхностей, для которых каркас является набором контрольных точек, то есть создается каркасная модель. Каркасная модель визуализуется наложением поверхностных текстур с учетом условий освещения. В ходе перемещения объекта получается весьма правдоподобная имитация движений живых существ.

Наиболее совершенный метод анимации заключается в фиксации реальных дви­жений физического объекта. Например, на человеке закрепляют в контрольных точках яркие источники света и снимают заданное движение на видео- или кино­пленку. Затем координаты точек по кадрам переводят с пленки в компьютер и присваивают соответствующим опорным точкам каркасной модели. В результате движе­ния имитируемого объекта практически неотличимы от живого прототипа.

Процесс расчета реалистичных изображений называют рендерингом (визуализацией). Большинство современных программ рендеринга основаны на методе обратной трассировки лучей (Backway Ray Tracing). Его суть заключается в следующем.

1. Из точки наблюдения сцены посылается в пространство виртуальный луч, по траектории которого должно прийти изображение в точку наблюдения.

2. Для определения параметров приходящего луча все объекты сцены проверяются на пересечение с траекторией наблюдения. Если пересечения не происходит, считается, что луч попал в фон сцены и приходящая информация определяется только параметрами фона. Если траектория пересекается с объектом, то в точке соприкосновения рассчитывается свет, уходящий в точку наблюдения в соот­ветствии с параметрами материала.

3. Сначала просчитывается преломленный и отраженный свет, затем проверяется видимость из точки пересечения всех источников света и интенсивность све­тового потока. Также вычисляются наличие, резкость и ширина бликов от каж­дого источника света.

4. Полученные в результате итоговые значения цвета и интенсивности обраба­тываются с учетом траектории луча и параметров атмосферы, и присваиваются точке объекта как значения визуализации для наблюдателя. Затем процесс повто­ряется для всех элементов сцены. С целью упрощения расчетов пересечение проверяют не для каждой точки, а для примитива в целом. Иногда вокруг объекта создают простую виртуальную геометрическую фигуру (параллелепипед, шар), расчет пересечений для объекта выполняют только при пересечении траекто­рии наблюдения с фигурой в целом.

Применение сложных математических моделей позволяет имитировать такие физи­ческие эффекты, как взрывы, дождь, огонь, дым, туман. Существуют методы расчета процедурных эффектов (Procedural Effects) и взаимодействия систем частиц (Particle System). Однако их применение в полном объеме требует громадных вычислитель­ных ресурсов, и потому в персональных компьютерах обычно используют упро­щенные варианты. По завершении рендеринга компьютерную трехмерную анимацию используют либо как самостоятельный продукт, либо в качестве отдельных частей или кадров готового продукта (рис. 15.8).

Особую область трехмерного моделирования в режиме реального времени состав­ляют тренажеры технических средств — автомобилей, судов, летательных и кос­мических аппаратов. В них необходимо очень точно реализовывать технические параметры объектов и свойства окружающей физической среды. В более простых вариантах, например при обучении вождению наземных транспортных средств, тре­нажеры реализуют на персональных компьютерах.

Самые совершенные на сегодняшний день устройства созданы для обучения пилоти­рованию космических кораблей и военных летательных аппаратов. Моделирова­нием и визуализацией объектов в таких тренажерах заняты несколько специализированных графических станций, построенных на мощных RISC -процессорах и скоростных видеоадаптерах с аппаратными ускорителями трехмерной графики. Общее управление системой и просчет сценариев взаимодействия возложены на суперкомпьютер, состоящий из десятков и сотен процессоров. Стоимость таких комплексов выражается девятизначными цифрами, но их применение окупается достаточно быстро, так как обучение на реальных аппаратах в десятки раз дороже.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 407; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.115 сек.