КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Зависимость проницаемости от пористости
КЛАССИФИКАЦИЯ ПРОНИЦАЕМЫХ ПОРОД По характеру проницаемости (классификация Теодоровича Г. И.) различают следующие виды коллекторов: - равномерно проницаемые; - неравномерно проницаемые; - трещиноватые. По величине проницаемости (мкм2) для нефти выделяют 5 классов коллекторов: 1. очень хорошо проницаемые (>1); 2. хорошо проницаемые (0,1 – 1); 3. средне проницаемые (0,01 – 0,1); 4. слабопроницаемые (0,001 – 0,01); 5. плохопроницаемые (<0,001). Классификация коллекторов газовых месторождений включает 1–4 классы.
Теоретически, для хорошо отсортированного материала (песок мономиктовый) проницаемость не зависит от пористости. Для реальных коллекторов в общем случае более пористые породы являются и более проницаемыми. Зависимость проницаемости от размера пор для фильтрации через капиллярные поры идеальной пористой среды оценивается из соотношений уравнений Пуазейля и Дарси. В этом случае пористая среда представляется в виде системы прямых трубок одинакового сечения длиной L, равной длине пористой среды. Уравнение Пуазейля описывает объёмную скорость течения жидкости через такую пористую среду: , (1.20)
где r – радиус порового канала; L – длина порового канала; n – число пор, приходящихся на единицу площади фильтрации; F – площадь фильтрации; m – вязкость жидкости; DР – перепад давлений. Коэффициент пористости среды, через которую проходит фильтрация: . (1.21)
Следовательно, уравнение (1.20) можно переписать следующим образом:
. (1.22)
И сравнить с уравнением Дарси: . (1.23)
Приравняв правые части уравнений (1.22) и (1.23) получим выражение для взаимосвязи пористости, проницаемости и радиуса порового канала: . (1.24)
Из чего следует, что размер порового канала можно оценить:
. (1.25)
Если выразить проницаемость в мкм2, то радиус поровых каналов (в мкм) будет рассчитываться: . (1.26)
Уравнения (1.24) – (1.26) характеризуют взаимосвязь между пористостью, проницаемостью и радиусом порового канала. Соотношения (1.24) - (1.26) справедливы только для идеальной пористой среды, например, для кварцевогой песка. Для реальных коллекторов оценка радиуса порового канала производится с учетом структурных особенностей пород. Обобщенным выражением для этих целей является эмпирическое уравнение Ф.И. Котякова: , (1.27)
где r – радиус пор; j – структурный коэффициент, учитывающий извилистость порового пространства. Значение j можно оценить путём измерения электрического сопротивления пород. Для керамических пористых сред при изменении пористости от 0,39 до 0,28, по экспериментальным данным, j изменяется от 1,7 до 2,6. Структурный коэффициент для зернистых пород можно приблизительно оценить по эмпирической формуле: . (1.28)
Для оценки взаимосвязи коэффициента проницаемости от радиуса порового канала (при фильтрации жидкости только через каналы, капилляры) используются соотношения уравнений Пуазейля и Дарси. и . (1.29)
Причем, пористая среда представляет собой систему трубок. Общая площадь пор через которые происходит фильтрация равна: F = π · r2, откуда π = F/ r2. Подставив эту величину в уравнение Пуазейля и сократив одинаковые параметры в выражениях (1.29) получим: . (1.30)
Если r измеряется в [см], а коэффициент проницаемости в [Д] (1Д = 10-8см). то вводится соответствующий коэффициент пересчета = 9,869·10 –9. Тогда, коэффициент проницаемости при фильтрации жидкости через капилляр оценивается эмпирическим выражением:
Кпр = r2 / (8·9,869·10 –9) = 12,5 · 106 r2. (1.31)
Оценка взаимосвязи коэффициента проницаемости от высоты поровой трещины ( для фильтрации жидкости только через трещиноватые поры) оценивается из соотношений уравнений Букингема и Дарси. Потери давления при течении жидкости через щель очень малой высоты оцениваются уравнением Букингема: , (1.32)
где h – высота трещины; v – линейная скорость фильтрации. Подставив это выражение в уравнение Дарси (1.23) и сократив подобные члены, получим: . (1.33)
С учетом того, что r измеряется в [см], а коэффициент проницаемости в [Д], вводим соответствующий коэффициент пересчета = 9,869·10 –9. Тогда, коэффициент проницаемости при фильтрации жидкости через трещину оценивается:
Кпр = h2 / (12 · 9,869·10 –9) = 84,4 · 105 h2. (1.34)
Уравнения (1.31) и (1.34) используется для теоретической оценки коэффициентов проницаемости для конкретного вида пор. На практике проницаемость породы определяют в лабораторных условиях по керновому материалу (см. раздел лаборат. практикума).
Дата добавления: 2014-01-04; Просмотров: 338; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |