КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Оценка качества уравнения регрессии
Качество модели регрессии связывают с адекватностью модели наблюдаемым (эмпирическим) данным. Проверка адекватности (или соответствия) модели регрессии наблюдаемым данным проводится на основе анализа остатков. После построения уравнения регрессии мы можем разбить значение y в каждом наблюдении на две составляющих - и . Остаток представляет собой отклонение фактического значения зависимой переменной от значения данной переменной, полученное расчетным путем: (). На практике, как правило, имеет место некоторое рассеивание точек корреляционного поля относительно теоретической линии регрессии, т. е. отклонения эмпирических данных от теоретических (). Величина этих отклонений и лежит в основе расчета показателей качества (адекватности) уравнения регрессии. При анализе качества модели регрессии используется основное положение дисперсионного анализа, согласно которому общая сумма квадратов отклонений зависимой переменной от среднего значения может быть разложена на две составляющие — объясненную и необъясненную уравнением регрессии дисперсии: (1) где - значения y, вычисленные по модели . Разделив правую и левую часть выражения (1) на
,
получим .
Коэффициент детерминации определяется следующим образом: . Коэффициент детерминации показывает долю вариации результативного признака, находящегося под воздействием изучаемых факторов, т. е. определяет, какая доля вариации признака y учтена в модели и обусловлена влиянием на него факторов. Чем ближе к 1, тем выше качество модели. Для оценки качества регрессионных моделей целесообразно также использовать коэффициент множественной корреляции (индекс корреляции) R. Данный коэффициент является универсальным, так как он отражает тесноту связи и точность модели, а также может использоваться при любой форме связи переменных. При построении однофакторной линейной модели он равен коэффициенту линейной корреляции . Качество полученного уравнения регрессии оценивают также с помощью средней относительной ошибки аппроксимации (приближения), которая рассчитывается по формуле: . Допустимый предел значений этого показателя составляет не более 8-10%. После того как уравнение регрессии построено, выполняется проверка значимости построенного уравнения в целом и отдельных параметров. Оценить значимость уравнения регрессии – это означает установить, соответствует ли математическая модель, выражающая зависимость между Y и Х, фактическим данным и достаточно ли включенных в уравнение объясняющих переменных Х для описания зависимой переменной Y Оценка значимости уравнения регрессии производится для того, чтобы узнать, пригодно уравнение регрессии для практического использования (например, для прогноза) или нет. При этом выдвигают основную гипотезу о незначимости уравнения в целом, которая формально сводится к гипотезе о равенстве нулю параметров регрессии, или, что то же самое, о равенстве нулю коэффициента детерминации: . Альтернативная ей гипотеза о значимости уравнения — гипотеза о неравенстве нулю параметров регрессии. Оценка значимости уравнения регрессии в целом осуществляется с помощью критерия Фишера, который также называется F-критерием. Для парной регрессии формула F-критерия выглядит следующим образом: . Если рассчитанное по вышеприведенной формуле значение F-критерия больше табличного значения, то уравнение регрессии признается статистически значимым. Табличное значение F-критерия берется из специальных статистических таблиц, которые есть в любом учебнике по эконометрике. Табличное значение F-критерия выбирается исходя из уровня значимости (такой уровень значимости принимается для экономических расчетов) и числа степеней свободы k1=1 и k2=n-2 (для парной регрессии).
Дата добавления: 2014-01-04; Просмотров: 3296; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |