Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Використання комплексних чисел для аналізу кіл синусоїдного струму




Застосування комплексних чисел для розрахунків кіл синусоїдного струму дає можливість замінити диференційні рівняння, якими описуються процеси у цих колах, алгебраїчними рівняннями. Метод аналізу та розрахунку електричних кіл синусоїдного струму з використанням комплексних часто називають символічним або комплексним методом.

З курсу математики відомо, що синусоїдну функцію, зокрема обертовий вектор-орт (рис. 2.10), можна записати комплексним числом. Тому при розрахунках електричних кіл синусоїдного струму, замість геометричних дій з векторами, використовують більш зручні і точніші алгебраїчні дії з комплексними числами.

 

Відомо, що комплексне число може бути записано у алгебраїчній, показниковій і тригонометричній формах, відповідно:

; ; ,

де a та b – відповідно, дійсна та уявна складові комплексного числа (проекції вектора на вісі, відповідно, дійсних та уявних чисел); А – модуль комплексного числа (довжина вектора); y – аргумент комплексного числа (кут нахилу вектора до вісі дійсних чисел); – уявне число; е – основа натурального логарифму.

Для переходу від однієї форми запису комплексного числа до іншої використовують співвідношення (рис. 2.10):

;; та .

Комплекс діючого значення електричної величини, що змінюється у часі за синусоїдою, виділяють крапкою над символом, який відображає цю величину. Наприклад: – комплекс діючого значення струму; – комплекс діючого значення напруги. Якщо електрична величина не є синусоїдною, то комплекс її значення виділяють рискою під символом, який відображає цю величину. Наприклад: Z – комплекс повного опору; S – комплекс повної потужності.

Додавати або віднімати комплексні числа зручніше коли вони надані у алгебраїчній формі запису:

;

Виконувати множення, або ділити – зручніше коли числа надані у показниковій формі:

;

Комплекси величини, які відрізняються тільки за знаком аргументу, називають спряженими комплексами. В електротехніці спряжений комплекс звичайно виділяють “зірочкою” над символом величини. Так, наприклад, якщо маємо

,

то спряжений комплекс буде:

Зазначимо, що при множенні комплексу величини на спряжений комплекс, в результаті одержимо квадрат модуля цієї величини –

.

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 719; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.