Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Закон Ома в дифференциальной форме

Представим себе электрический ток не в привычном для нас проводнике, а однородной изотропной проводящей среде. В своём направленном движении носители заряда перемещаются по траекториям, которые называются «линии тока». Выделим в среде небольшую поверхность D S. Линии тока, коснувшиеся границы этой поверхности, в дальнейшем вырезают в пространстве «трубку тока» (рис. 6.4.). Особенность этой трубки состоит в том, что заряженные частицы, движущиеся внутри трубки тока, не пересекают её боковую поверхность, то есть они никогда не покидают свою трубку тока.

Рис. 6.4.

Выделим в трубке тока два эквипотенциальных сечения D S 1 и D S 2, отстоящие друг от друга на расстоянии D l (рис. 6.5.). Потенциалы этих сечений j1 и j2 = j1 + Dj. Для выделенного элемента трубки тока запишем закон Ома (6.11):

.

Рис. 6.5.

Сократив D S и введя удельную электропроводимость l = , получим:

.

Этот результат становится совсем точным, если перейти к пределу, устремив D l к нулю. Тогда D S = D S 1 = D S 2, так как трубка становится цилиндрической. Кроме того:

. (6.12)

Учитывая этот результат, плотность тока запишем так:

i = l E,

или в векторном виде:

. (6.13)

Уравнение (6.13) — математическая запись закона Ома в дифференциальной форме. В этом законе связываются две «локальные» характеристики тока: плотность тока в любой точке пространства и напряжённость электрического поля в той же точке. В соответствии с этим законом, плотность электрического тока прямо пропорциональна напряжённости поля в рассматриваемой точке пространства.

В приведённых рассуждениях есть момент, который не может не настораживать: в законе (6.13) Е — напряжённость электрического поля в проводящей среде с током. А для вычисления этой характеристики мы воспользовались связью напряжённости и потенциала электростатического поля в вакууме (6.12). Однако можно показать, что напряжённость электрического поля внутри однородной проводящей среды совпадает с электростатическим полем, которое существует в вакууме, если обеспечивается то же пространственное распределение потенциала, что и в проводящей среде при наличии тока (см., например, [2]).

Теперь на примере расчёта тока утечки в сферическом конденсаторе покажем, как используется закон Ома в дифференциальной форме для решения вполне реальных задач.

3. Пример расчёта силы тока в проводящей среде

Пространство между обкладками сферического конденсатора заполнено проводящей средой с удельной электропроводимостью . Какой ток потечёт в таком конденсаторе, если потенциалы электродов j1 и j2 поддерживать постоянными (рис. 6.6.)?

Рис. 6.6.

Задача обладает сферической симметрией. Выделим сферическую эквипотенциальную поверхность радиуса r. Во всех точках этой поверхности не только потенциал одинаков, но и плотность тока по величине одна и та же (6.13):

i = l Er,

где Er — напряжённость поля в проводящей среде на поверхности выделенной сферы r. Это поле совпадает с электростатическим полем в вакууме при разности потенциалов на обкладках конденсатора U = j1 – j2. Несложно показать, что для сферического конденсатора:

.

(При выводе этого выражения, можно воспользоваться следующими ранее полученными соотношениями: (2.19), (4.8), (4.5)).

Теперь, воспользовавшись законом Ома в дифференциальной форме, вычислим плотность тока

и полный ток, протекающий через замкнутую поверхность выделенной сферы:

.

Величина этого тока не зависит, конечно, от радиуса r выделенной сферической поверхности: I ¹ f (r). Зная закон сохранения электрического заряда, этот результат можно было бы предсказать a priori.

Теперь легко вычислить электрическое сопротивление проводящего слоя в конденсаторе:

.

Нелишне ещё раз напомнить, что здесь — удельное сопротивление среды, Rсопротивление проводящего слоя, а вот R 1 и R 2радиусы сферических обкладок конденсатора.

<== предыдущая лекция | следующая лекция ==>
Закон Ома в интегральной форме | Закон Джоуля-Ленца в интегральной и дифференциальной формах
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1041; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.028 сек.